\(\Delta\)ABC cân tại A, kẻ AH là tia phân giác của BAC

a) Chứng minh HB = HC...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình bạn tự vẽ nhé

a,Trong tam giác cân đường cao ứng vs đỉnh A đồng thời là đường phân giác ứng vs đỉnh đó

=> AH là phân giác của  \(\widehat{BAH}\)

Xét \(\Delta ABH\)\(\Delta ACH\),có:

\(AB=AC\)(vì \(\Delta ABC\)cân tại A)

\(\widehat{BAH}=CAH\)(vì AH là phân giác của \(\widehat{BAH}\))

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)

b,.Xét \(\Delta BAH\)và \(\Delta BED\) có:

\(\widehat{ABH}=\widehat{EBD}\)

\(AB=BE\)

\(DB=BH\)

\(\Rightarrow\Delta BAH=\Delta BED\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{BED}\) ( 2 góc tương ứng)

mà 2 góc ở vị trí so le trong

\(\Rightarrow DE//AH\)

c. Xét \(\Delta AHD\) có:

\(\widehat{AHD}=90^o\)

=> DA > AH

mà AH=DE ( \(\Delta BAH=\Delta BED\))

=> DA > DE

Xét \(\Delta DAE\)có:

DA > DE

=> \(\widehat{DEA}>\widehat{DAE}\)

\(\widehat{DAE}=\widehat{BAH}\) ( chứng minh câu b )

=> \(\widehat{BAH}>\widehat{DAE}\)

hay \(\widehat{BAH}>\widehat{DAB}\)

câu d,e mik chw lm đc

k mik nhé!

#sadgirl#

21 tháng 5 2019

a, Xét \(\Delta BAH\)vuông tại H và \(\Delta CAH\)vuông tại H có:

                       BA = CA ( \(\Delta ABC\)cân ở A )

                       AH : cạnh chung

\(\Rightarrow\Delta BAH=\Delta CAH\)( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\hept{\begin{cases}HB=HC\\\widehat{BAH}=\widehat{CAH}\end{cases}}\)

                          => AH là phân giác góc BAC

b, Xét \(\Delta DBE\)và \(\Delta HBA\)có:

               DB = HB ( giả thiết )

                \(\widehat{DBE}=\widehat{HBA}\)( 2 góc đối đỉnh )

                BE = BA ( giả thiết )

=>\(\Delta DBE\)\(\Delta HBA\)( c-g-c )

=> \(\widehat{BDE}=\widehat{BHA}\)

 Mà 2 góc này so le trong

=> AH // DE

c, 

Xét \(\Delta\)AHD có \(\widehat{AHD}=90^o\)

=> DA > AH

mà AH=DE  ( \(\Delta DBE=\Delta HBA\))

=> DA > DE

Xét \(\Delta DAE\) có: DA > DE

=> \(\widehat{DEA}>\widehat{DAE}\) 

mà \(\widehat{DEA}=\widehat{BAH}\) ( chứng minh câu b )

=> \(\widehat{BAH}>\widehat{DAE}\)

hay \(\widehat{BAH}>\widehat{DAB}\)

d, Vì DB = BH mà BH = CH ( chứng minh câu a )

=> DB = BH = CH

=> DB = \(\frac{1}{2}BC\)hay DB = \(\frac{1}{3}CD\)     (1)

    Có:  D là trung điểm EF 

=> CD là đường trung tuyến trong \(\Delta EFC\)  (2)

 Từ (1) và (2)

=> B là trọng tâm trong tam giác EFC

  Mà  FG là  đường trung tuyến trong ​\(\Delta EFC\)( do G là trung điểm CE )

=> FG đi qua B

=> 3 điểm F,B,G thẳng hàng

      

17 tháng 5 2018

c. Xét tam giác AHD có góc AHD= 90 độ

=> DA > AH

mà AH=DE ( tam giác BAH = tam giác BED)

=> DA > DE

Xét tam giác DAE có: DA > DE

=> góc DEA > DAE

mà góc DEA = BAH ( chứng minh câu b )

=> góc BAH > DAE

hay góc BAH > DAB

17 tháng 5 2018

HÌNH TỰ VẼ NHAleuleu

a, ∆ ABC cân tại A => AB=AC

=> góc ABC=ACB

Xét tam giác AHB và tam giác AHC có:

AB=AC

góc AHB=AHC = 90 độ

ABH=ACH

=> tam giác AHB = tam giác AHC ( cạnh huyền-góc nhọn)

=> HB=HC ( 2 cạnh tương ứng )

Có: tam giác AHB = tam giác AHC => góc BAH=CHA

=> AH là tia phân giác của góc BAC

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nen H là trung điểm của BC và AH là phân giác của góc BAC

b: Xét tứ giác ADEH có

B là trung điểm của AE
B là trung điểm của DH

Do đó: ADEH là hình bình hành

Suy ra: DE//AH

c: Ta có: DE//AH

nên góc DAB=góc HEB

mà góc HEB>góc BAH

nên góc DAB>góc BAH

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nen H là trung điểm của BC và AH là phân giác của góc BAC

b: Xét tứ giác ADEH có

B là trung điểm của AE
B là trung điểm của DH

Do đó: ADEH là hình bình hành

Suy ra: DE//AH

c: tacó: góc BAH=góc BDE

mà góc BDE>góc BAD

nên góc BAH>góc BAD