Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N H I K
Cm: a) Ta có: AM + AN = 2AB
hay AM + AC + CN = AB + AB
=> AM + CN = AB (vì AC = AB)
Mà AM + MB = AB (M thuộc AB)
=> BM = CN (Đpcm)
b) Gọi giao điểm của BC và MN là I. Kẻ đường thẳng MH // AN
Do MH // AN => góc MHB = góc ACH
Mà góc B = góc ACH ( vì t/giác ABC cân)
=> góc B = góc MHB => t/giác BMH cân tại M
=> MB = MH
Mà MB = CN (cm câu a)
=> MH = CN
Xét t/giác MHI có góc HMC + góc MIH + góc IHM = 1800 (tổng 3 góc của 1 t/giác)
Xét t/giác CNI có góc N + góc NCI + góc CIN = 1800 (tổng 3 góc của 1 t/giác)
Và góc MIH = góc CIN (đối đỉnh); góc MHI = góc ICN (so le trong vì MH//AC)
=> góc HMI = góc N
Xét t/giác MHI và t/giác NCI
có MH = CN (cmt)
góc MHI = góc ICN (so le trong vì MH // AC)
góc HMI = góc N (cmt)
=> t/giác MHI = t/giác NCI (g.c.g)
=> MI = IN (hai cạnh tương ứng)
=> HC đi qua trung điểm của đoạn thẳng MN
hay BC đi qua trung điểm của đoạn thẳng MN
c) Xem rồi lm
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
Bn tự vẽ hình nha
a, Xét tam giác AHM và tam giác AKM có:
- Góc HAM = góc KAM ( Do AM là phân giác góc A)
- AM chung-
- Góc AHM = góc AKM =900
=> Tam giác AHM = tam giác AKM (cạnh huyền - góc nhọn)
=> AH = AK ( 2 cạnh tương ứng)
=> MH=MK ( 2 cạnh tuong ứng )
b, Xét tam giác AMB và tam giác AMC có:
- AM chung
- BAM = CAM ( do AM là phân giác góc A)
- BM = CM ( gt )
=> Tam giác AMB = tam giác AMC ( c.g.g )
=> Góc ABC = góc ACB ( 2 góc tương ứng )
=> Tam giác ABC cân ( 2 góc bằng nhau )
♬ დ დ MINIGAME NHANH NHƯ CHỚP SỐ THỨ 7 NGÀY 16/2/2019♬ დ დ Ⓐ Ⓛ Ⓕ Ⓐ Ⓩ Ⓘ —->Ra mắt Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb22b658d8953adc4773c Ⓐ Ⓛ Ⓕ Ⓐ Ⓩ Ⓘ —->Mua hàng tại Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb44b658d8953adc47748 Ⓐ Ⓛ Ⓕ Ⓐ Ⓩ Ⓘ LINK MỜI BẠN BÈ THAM GIA SỐ THỨ 7 NHANH NHƯ CHỚP: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b (Copy gửi cho các bạn của mình nhé!) ❁ ✪ 1. Thời gian: Bắt đầu từ lúc 6h hoặc 8h Kết thúc lúc 21h ngày hôm sau. Thời gian công bố kết quả: 21h30 phút ngày hôm sau. ❁ ✪ 2. CÂU HỎI NGÀY HÔM NAY: “Bạn làm việc gì đầu tiên mỗi buổi sáng?” 👌🏻Giải thích câu trả lời! ❁ ✪ 3.Hình thức: Khi các bạn tham gia MiniGame Nhanh Như Chớp, các bạn sẽ nhận được ĐIỂM. ĐIỂM sẽ được tích luỹ từ số này qua số khác của Minigame. Các bạn hãy tích luỹ ĐIỂM để mua hàng tại Shop: ❁ ✪ -Tham gia trả lời câu hỏi:+1 điểm ❁ ✪ -Mỗi câu trả lời đúng: +1 điểm ❁ ✪ -Mời một bạn cùng tham gia: +1 điểm/1 bạn ❁ ✪ Các bạn hãy comment theo mẫu: “Câu trả lời+tên 3 bạn mà bạn đã mời” ——>Chỉ những bình luận làm theo mẫu mới được tính❤️❤️ ❁ ✪ LINK MỜI BẠN BÈ THAM GIA SỐ THỨ 7 NHANH NHƯ CHỚP: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b (Copy gửi cho các bạn của mình nhé!) ❁ ✪ ĐIỂM SẼ ĐƯỢC TÍCH LUỸ TỪ SỐ NÀY QUA SỐ KHÁC CỦA MINIGAME NHANH NHƯ CHỚP NÊN CƠ HỘI RẤT NHIỀU CÁC BẠN NHÉ! ❁ ✪ Các bạn sẽ thắc mắc điểm dùng để làm gì? ❁ ✪ ĐIỂM sẽ dùng để mua hàng tại Shop Alfazi. ❁ ✪ —->Ra mắt Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb22b658d8953adc4773c ❁ ✪ —->Mua hàng tại Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb44b658d8953adc47748 ❁ ✪ LINK MỜI BẠN BÈ THAM GIA SỐ THỨ 7 NHANH NHƯ CHỚP: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b (Copy gửi cho các bạn của mình nhé!) Thân, Nhóm phát triển cộng đồng❤️❤️
A B C H N M
Bài làm
a) Vì tam giác ABC vuông cân ở A
Mà AH là phân giác
=> AH là trung tuyến.
=> AH = BH = HC
=> Tam giác AHC cân tại H
=> AH = HC
=> \(\widehat{HAC}=\widehat{HCA}\)
Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )
=> \(\widehat{HCA}=\widehat{HAB}\)
Ta có: AN + NB = AB
AM + MC = AC
mà AB = AC, BN = AM
=> AN = MC
Xét tam giác AHN và tam giác CHM có:
AN = MC ( cmt )
\(\widehat{HCA}=\widehat{HAB}\)( cmt )
AH = HC ( cmt )
=> Tam giác AHN = tam giác CHM ( c.g.c)
b) Vì tam giác AHN = tam giác CHM ( cmt )
=> NH = HM
Vì AH trung tuyến
=> BH = HC
Xét tam giác AHM và tam giác NHB có:
NH = HM ( cmt )
BN = AM ( gt )
HB = HC ( cmt )
=> Tam giác AHM = tam giác NHB ( c.c.c )
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC