\(\Delta\)ABC cân tại A. Gọi I là trung điểm của BC. Gọi HK lần lượt là hình chiếu tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề rì mà kì vậy trời...-.-'?

TA có hình vẽ:

A B C I H K

a) Ta có \(\Delta ABC\)cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta IBH\)và \(\Delta ICK\):

BI=CI(gt)

\(\widehat{HBI}=\widehat{KCI}\left(cmt\right)\)

\(\widehat{BHI}=\widehat{CKI}=90^o\)

\(\Rightarrow\Delta IBH=\Delta ICK\left(ch-gn\right)\)

=> Đpcm

b) Ta có: \(\Delta IBH=\Delta ICK\)(cm câu a)

=> \(\hept{\begin{cases}HB=KC\\HI=KI\end{cases}}\)(các cạnh tương ứng)

=> AH=AK

Xét \(\Delta AHI\)và \(\Delta AKI\):

AI: cạnh chung

AH=AK(cmt)

HI=KI(cmt)

\(\Rightarrow\Delta AHI=\Delta AKI\left(c-c-c\right)\)

\(\Rightarrow\widehat{HAI}=\widehat{KAI}\)(2 góc tương ứng)

=> AI là phan giác góc \(\widehat{BAC}\)

=> Đpcm

P/s: Đề chắc vậy nhỉ???

7 tháng 5 2020

Bài này .....

7 tháng 5 2020

Bạn ơi, bài này sai đề r, phải là gọi H,K lần lượt lầ hc của I trên AB,BC!

25 tháng 12 2016

Lâu rồi k giải toán, giờ trở lại vs Toán thân iu

Ta có hình vẽ:

A B C D M I K

a/ Xét tam giác ABD và tam giác CMD có:

AD = DC (vì D là trung điểm AC)

góc ADB = góc CDM (đối đỉnh)

DB = DM (GT)

Vậy tam giác ABD = tam giác CMD (c.g.c)

=> AB = CM (2 cạnh tương ứng)

Ta có: tam giác ABD = tam giác CMD

=> góc BAC = góc MCA (2 góc tương ứng)

b/ Xét tam giác AMD và BCD có:

AD = DC (vì D là trung điểm AC)

góc ADM = góc BDC (đối đỉnh)

DM = DB (GT)

Vậy tam giác AMD = tam giác BCD (c.g.c)

=> góc MAD = góc DCB (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AM // BC (đpcm)

c/ Xét tam giác ABC và tam giác AMC có:

AC: cạnh chung

AB = CM (do tam giác ABD = tam giác CMD)

AM = BC (do tam giác AMD = tam giác BCD)

=> tam giác ABC = tam giác AMC (c.c.c)

d/ Ta có: AB = CM (câu a)

Mà I là trung điểm AB

và K là trung điểm CM

=> AI = IB = MK = KC

Xét tam giác IAD và tam giác KCD có:

AI = CK (đã chứng minh trên)

góc BAC = góc MCA (câu a)

AD = DC (vì D là trung điểm AC)

=> tam giác IAD = tam giác KCD (c.g.c)

=> góc IDA = góc KDC (2 góc tương ứng)

Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800

=> góc ADM + góc MDK + góc IDA = 1800

=> góc IDK = 1800

hay K,D,I thẳng hàng

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

5 tháng 5 2020

mink chịu nhé bn

19 tháng 11 2017

A B C D E F M K

a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:

AB=DE và AC=DF(gt)

\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai

=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)

b. vì 2 tam giác = nhau 

=> BC=EF(2 cạnh tương ứng)

Mà  M và K lần lượt là trung điểm của BC và EF.

=> CM=FK

c.Vì 2 tam giác ABC và DEF bằng nhau nên:

\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)

Xét \(\Delta ACM\)và \(\Delta DFK\)có:

AC=DF(gt)

\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)

CM=FK(ch/m trên)

=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)

=> AM =DK(2 cạnh tương ứng)

19 tháng 11 2017

đề có chút sai hay sao ý

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau