Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M
a)Xét tam giác AMB và tam giác AMC có:
AM chung
AB=AC(do tam giác ABC cân tại A)
BM=MC(đường trung tuyến AM cắt BC tại M)
=>tam giác AMB = tam giác AMC (c.c.c)
b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)
mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC
c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)
Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82
<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)
a) Xét tam giác ABM và tam giác ACM có:
AM cạnh chung
AB=AC( tam giác ABC cân tại A )
MB=MC (gt)
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) AM- đường trung tuyến của tam giác ABC (gt)
Và K trọng tâm của tam giác ABC
Suy ra K thuộc AM
Suy ra A,K,M thẳng hàng
Lời giải:
a)
Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)
Xét tam giác $AMB$ và $AMC$ có:
\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)
b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)
Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)
Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)
\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)
Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)
Fan vuơng túân khải à 😒😁