\(\Delta\)ABC cân tại A có đường trung tuyến AH 

a) Chứng minh ^ABH = ^ACH 

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

=>ΔABH=ΔACH

b: Xét ΔACB có

BM,AH là trung tuyến

BM cắt AH tại G

=>G là trọng tâm

=>C,G,N thẳng hàng

c: Xét ΔABG và ΔACG có

AB=AC

góc BAG=góc CAG

AG chung

=>ΔABG=ΔACG

14 tháng 4 2023

a; 

có Abc là tam giac cân taji A (gt)

=> AH là đg cao và là ddg trùng tuyến và là đg phan giác 

=> H là trung điểm của BC

Xét tam giác ABH va ACH có

1: có AH chung

2: HB=HC( CMT)

3: AB=AC (2 cạnh bên của tam giác ABC cân tại a)

=> 2 tam giác bằng nhau theo TH c.c.c

b;

xét 2 tam giác: AMB va CME có

AM=MC ( BM là trung tuyến=>m là trung điểm AC)

MB=ME (GT)

Góc AMB=Goc AMC (2 góc đối đỉnh)

=> 2tam giác bằng nhau theo TH (CGC)

=> góc CEm= góc ABM (2 góc tương ung trong 2 tam giác bằng nhau)

=> AB//CE (2 đg thằng có 2 góc đồng vị bằng nhau)

c;

có AB//CE (CMt)

=> Góc ABC= góc BCK (2 góc so le trong)

xet 2 tam giác vuông ACH va KCH có

HC chung

goc KCH=ACH (cùng bằng góc ABC)

=> 2 tam giác bằng nhau

=>HK=AH (1)

xet Tam gioác ABC có am là trung tuyên tại M; BM là trung tuyến

=> G là trọng tâm

=> HG= 1/3 AH (tinh chât trọng tâm của tam giác) (2)

tù 1 và 2 => HG=1/3 HK => HK=3HG(3)

Trong Tam giác KHC có 

CK< HC+HK (4)

Từ 3 và 4 => KC< HC+3HG (dieu phai chung minh)

 

a: XétΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC
Do đo; ΔAHB=ΔAHC

b: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

Suy ra: MB=MC

hay ΔMBC cân tại M

c: Xét ΔABN có \(\widehat{ABN}=\widehat{ANB}\)

nen ΔABN cân tại A

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a)

Xét tam giác $ABH$ và $ACH$ có:
\(AB=AC\) do tam giác $ABC$ đều

\(BH=CH=\frac{BC}{2}\)

\(AH\) chung

\(\Rightarrow \triangle ABH=\triangle ACH(c.c.c)\)

b) Vì tam giác $ABC$ đều nên \(\widehat{DBM}=\widehat{ACH}\)

\(\widehat{ACH}=\widehat{ECN}\) (đối đỉnh)

\(\Rightarrow \widehat{DBM}=\widehat{ECN}\)

Xét 2 tam giác vuông $BDM$ và $CEN$ có:

\(\left\{\begin{matrix} BD=CE\\ \widehat{DBM}=\widehat{ECN}\end{matrix}\right.\Rightarrow \triangle BDM=\triangle CEN(ch-gn)\)

\(\Rightarrow DM=EN\)

Lại có: \(DM\parallel EN\) (cùng vuông góc với BC)

\(\Rightarrow \widehat{MDI}=\widehat{NEI}\) ( so le trong)

Xét tam giác $MDI$ và $NEI$ có:

\(\widehat{MDI}=\widehat{NEI}(cmt)\)

\(DM=EN\)

\(\widehat{DMI}=\widehat{ENI}=90^0\)

\(\Rightarrow \triangle MDI=\triangle NEI(g.c.g)\Rightarrow DI=EI\), do đó $I$ là trung điểm của $DE$

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

c) Vì $I$ là trung điểm của $DE$ (đã chứng minh ở phần b)

\(KI\perp DE\) nên $KI$ là đường trung trực của $DE$

Do đó: \(KD=KE\)

Mặt khác: Vì theo phần a, \(\triangle AHB=\triangle AHC\Rightarrow \widehat{AHB}=\widehat{AHC}\)

\(\widehat{AHB}+\widehat{AHC}=180^0\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0\)

Do đó: \(AH\perp BC\) hay $KH\perp BC$

Mà $H$ là trung điểm $BC$ nên $KH$ là đường trung trực của $BC$

Do đó: \(KB=KC\)

Xét tam giác $BDK$ và $CEK$ có:

\(BD=CE\) (giả thiết)

\(BK=CK\) (cmt)

\(DK=EK\) (cmt)

\(\Rightarrow \triangle BDK=\triangle CEK(c.c.c)\)

\(\Rightarrow \widehat{DBK}=\widehat{ECK}\)

Lại thấy: \(\widehat{DBK}=\widehat{ABK}=\widehat{ACK}\) (dễ thấy do \(\triangle ABK=\triangle ACK(c.c.c)\) ))

Do đó: \(\widehat{ECK}=\widehat{ACK}\) . Hai góc này lại là 2 góc bù nhau nên mỗi góc bằng $90^0$

\(\Rightarrow AC\perp CK\) (đpcm)

12 tháng 4 2016

a, Xét tam giác ABH và tam giác ACH có 

góc bah =góc cah

ab =ac

góc B = góc C

=> tam giác abh = tam giác ach (g.c.g)

=>hb=hc

=>góc ahb = góc ahc

Mà góc AHB + góc AHC=180 độ

=>ah vuông góc với bc

b,bh=hc=36:2=18cm

áp dụng định lí PY-TA-GO vào tam giác ABH ta có 

ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah=24cm

a) xét tam giác BAH và tam giác HAC có:

AB = AC (gt)

 góc A1 = góc A2 ( vì AH là p/giác)

   AH chung

=> tam giác BAH = tam giác HAC ( c.g.c)

=> HB = HC

ta có: góc AHB + góc AHC = 1800 ( kề bù)

                => 2 góc AHB = 1800

               => góc AHB = \(\frac{180^0}{2}=90^0\)

=> AH vuông góc BC