Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Ta có : \(\hept{\begin{cases}\sqrt{17}>\sqrt{16}\\\sqrt{26}>\sqrt{25}\end{cases}}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Ta lại có : \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
A B C D E
Trên nửa mặt phẳng bờ AD có chứa điểm C, dựng tam giác đều AED.
Ta có ^ADC = 1800 - ^ABC - ^ACB - ^ACD = 300 => ^ADC = ^ADE/2 => ^ADC = ^EDC
Kết hợp với DA = DE ta được \(\Delta\)DCA = \(\Delta\)DCE (c.g.c) => ^DCE = ^DCA = 1100
Từ đó ^ACE = 3600 - 2^DCA = 3600 - 2.1100 = 1400 => ^ACE = ^CAB
Đồng thời CE = CA (2 cạnh tương ứng) = AB. Xét \(\Delta\)ABC và \(\Delta\)CEA có:
AC chung, ^CAB = ^ACE, AB = CE (cmt) => \(\Delta\)ABC = \(\Delta\)CEA (c.g.c)
Suy ra BC = EA (2 cạnh tương ứng) = AD (Do \(\Delta\)AED đều). Vậy AD = BC (đpcm).
a ) Ta có :
+) \(AB< AC\) ( gt )
\(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )
+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABH+60+90=180\)
\(\Rightarrow ABH=30\)
b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt )
\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)
Mà \(ABH=30\) ( cmt )
\(\Rightarrow ABH=BAD\)
\(\Rightarrow ABH=BAI\)
Xét tam giác \(AIB\) và tam giác \(BHA\) có :
\(AB\) chung
\(AIB=BHA=90\)
\(BAI=ABH\)
\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g )
c ) Xét tam giác \(ABI\) có :
\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABI+30+90=180\)
\(\Rightarrow ABI=60\)
\(\Rightarrow ABE=60\) ( 1 )
Xét tam giác \(ABE\) có :
\(ABE+BAE+AEB=180\) ( tổng ba góc trong một tam giác )
\(\Rightarrow60+60+AEB=180\)
\(\Rightarrow AEB=60\) ( 2 )
Mà \(BAE=60\) ( gt ) ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 )
\(\Rightarrow\) tam giác \(ABE\) đều
Chứng minh câu d:
A B C D H E I 1
Ta có: AE = AB < AC
=> E thuộc canh AC
\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE (1)
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED
=> ^ABD = ^AED => ^B1 = ^DEC ( góc ngoài )
mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B1 > ^C
=> ^DEC > ^C = ^ECD
Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2)
Từ (1); (2) => DC > DB
A B C x y
Giải:
a) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( vì 3 góc của 1 tam giác bằng \(180^o\) )
\(\Rightarrow\widehat{A}+70^o+40^o=180^o\)
\(\Rightarrow\widehat{A}+110^o=180^o\)
\(\Rightarrow\widehat{A}=70^o\)
Ta lại có: \(\widehat{A}+\widehat{B}=\widehat{ACx}\) ( vì góc ngoài của một tam giác bằng tổng 2 góc trong không kề với nó )
\(\Rightarrow\widehat{ACx}=70^o+70^o\)
\(\widehat{ACx}=140^o\)
b) Vì Cy là tia phân giác của góc \(\widehat{ACx}\) nên:
\(\widehat{ACy}=\frac{1}{2}\widehat{ACx}=70^o\)
Ta thấy \(\widehat{ACy}=\widehat{A}=70^o\) và 2 góc này ở vị trí so le trong nên AB // Cy
Vậy a) \(\widehat{ACx}=140^o\)
b) AB // Cy
A B C y x
Góc ACx là góc ngoài của tam giác ABC tại C
=> ACx + ACB = 180o => ACx = 180o - ACB = 180o - 40o = 140o
Cy là p/g của góc ACx => góc yCx = 1/2. góc ACx = 1/2 . 140o = 70o
=> góc ABC = yCx mà 2 góc này ở vị trí đồng vị
=> AB // Cy
a) xét \(\Delta MBE\)vuông tại E và \(\Delta HBE\)
có \(EM=EH\left(gt\right)\)
BE là cạnh chung
\(\Rightarrow\Delta MBE=\Delta HBE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{MBE}=\widehat{HBE}\)( 2 góc tương ứng)
xét \(\Delta MAE\)VUÔNG TẠI E và \(\Delta HAE\)VUÔNG TẠI E
CÓ EM=EH (gt)
AE LÀ CẠNH CHUNG
\(\Rightarrow\Delta MAE=\Delta HAE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{MAE}=\widehat{HAE}\)(2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta ABM\)VÀ \(\Delta ABH\)
CÓ \(\widehat{MBE}=\widehat{HBE}\left(cmt\right)\)
AB LÀ CẠNH CHUNG
\(\widehat{MAE}=\widehat{HAE}\left(cmt\right)\)
\(\Rightarrow\Delta ABM=\Delta ABH\left(g-c-g\right)\)
MÀ TAM GIÁC ABH VUÔNG TẠI H
=> TAM GIÁC ABM VUÔNG TẠI M
=> \(AM\perp BM\)( ĐỊNH LÍ)
B) TA CÓ \(AC\perp AB\)
\(HE\perp AB\)
\(\Rightarrow AC//HE\)(ĐỊNH LÍ)
\(\Rightarrow\widehat{EHA}=\widehat{HAF}\left(SLT\right)\)
XÉT \(\Delta EHA\)VUÔNG TẠI E VÀ \(\Delta FAH\)VUÔNG TẠI F
CÓ \(\widehat{EHA}=\widehat{HAF}\left(cmt\right)\)
HA LÀ CẠNH CHUNG
\(\Rightarrow\Delta EHA=\Delta FAH\left(ch-gn\right)\)
=> EA = FH (2 CẠNH TƯƠNG ỨNG)
XÉT \(\Delta EAH\)VUÔNG TẠI E VÀ \(\Delta HFE\)VUÔNG TẠI H
CÓ EA= FH (cmt)
EH LÀ CẠNH CHUNG
\(\Rightarrow\Delta EAH=\Delta HFE\left(cgv-cgv\right)\)
=> AH = EF (2 CẠNH TƯƠNG ỨNG)
CHÚC BN HỌC TỐT!!!!!!!!!!
tic cho mình hết âm nhé