\(\Delta\)ABC cân tại A có BC= 1cm; góc A= 200. Vẽ tia Cx trong góc ACB sa...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

ăn loz đi nhé

11 tháng 4 2018

Câu 1.

Ta có : \(\hept{\begin{cases}\sqrt{17}>\sqrt{16}\\\sqrt{26}>\sqrt{25}\end{cases}}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)

Ta lại có : \(\sqrt{99}< \sqrt{100}=10\) (2)

Từ (1) và (2)  \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

12 tháng 4 2018

Thanks

18 tháng 7 2019

A B C D E

Trên nửa mặt phẳng bờ AD có chứa điểm C, dựng tam giác đều AED.

Ta có ^ADC = 1800 - ^ABC - ^ACB - ^ACD = 300 => ^ADC = ^ADE/2 => ^ADC = ^EDC

Kết hợp với DA = DE ta được \(\Delta\)DCA = \(\Delta\)DCE (c.g.c) => ^DCE = ^DCA = 1100

Từ đó ^ACE = 3600 - 2^DCA = 3600 - 2.1100 = 1400 => ^ACE = ^CAB

Đồng thời CE = CA (2 cạnh tương ứng) = AB. Xét \(\Delta\)ABC và \(\Delta\)CEA có:

AC chung, ^CAB = ^ACE, AB = CE (cmt) => \(\Delta\)ABC = \(\Delta\)CEA (c.g.c)

Suy ra BC = EA (2 cạnh tương ứng) = AD (Do \(\Delta\)AED đều). Vậy AD = BC (đpcm).

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

1 tháng 10 2016

A B C x y

Giải:

a) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( vì 3 góc của 1 tam giác bằng \(180^o\) )

\(\Rightarrow\widehat{A}+70^o+40^o=180^o\)

\(\Rightarrow\widehat{A}+110^o=180^o\)

\(\Rightarrow\widehat{A}=70^o\)

Ta lại có: \(\widehat{A}+\widehat{B}=\widehat{ACx}\) ( vì góc ngoài của một tam giác bằng tổng 2 góc trong không kề với nó )

\(\Rightarrow\widehat{ACx}=70^o+70^o\)

\(\widehat{ACx}=140^o\)

b) Vì Cy là tia phân giác của góc \(\widehat{ACx}\) nên:

\(\widehat{ACy}=\frac{1}{2}\widehat{ACx}=70^o\)

Ta thấy \(\widehat{ACy}=\widehat{A}=70^o\) và 2 góc này ở vị trí so le trong nên AB // Cy

Vậy a) \(\widehat{ACx}=140^o\)

        b) AB // Cy

1 tháng 10 2016

A B C y x

Góc ACx là góc ngoài của tam giác ABC tại C

=> ACx + ACB = 180o => ACx = 180o - ACB = 180o - 40o = 140o

Cy là p/g của góc ACx => góc yCx = 1/2. góc ACx = 1/2 . 140o = 70o 

=> góc ABC = yCx mà 2 góc này ở vị trí đồng  vị

=> AB // Cy

4 tháng 2 2018

a) xét \(\Delta MBE\)vuông tại E và \(\Delta HBE\)

có \(EM=EH\left(gt\right)\)

BE là cạnh chung

\(\Rightarrow\Delta MBE=\Delta HBE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MBE}=\widehat{HBE}\)( 2 góc tương ứng)

xét \(\Delta MAE\)VUÔNG TẠI E và \(\Delta HAE\)VUÔNG TẠI E

CÓ EM=EH (gt)

AE LÀ CẠNH CHUNG

\(\Rightarrow\Delta MAE=\Delta HAE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MAE}=\widehat{HAE}\)(2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta ABM\)VÀ \(\Delta ABH\)

CÓ \(\widehat{MBE}=\widehat{HBE}\left(cmt\right)\)

AB LÀ CẠNH CHUNG

\(\widehat{MAE}=\widehat{HAE}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ABH\left(g-c-g\right)\)

MÀ TAM GIÁC ABH VUÔNG TẠI H

=> TAM GIÁC ABM VUÔNG TẠI M

=> \(AM\perp BM\)( ĐỊNH LÍ)

B) TA CÓ \(AC\perp AB\)

             \(HE\perp AB\)

\(\Rightarrow AC//HE\)(ĐỊNH LÍ)

\(\Rightarrow\widehat{EHA}=\widehat{HAF}\left(SLT\right)\)

XÉT \(\Delta EHA\)VUÔNG TẠI E VÀ \(\Delta FAH\)VUÔNG TẠI F

CÓ \(\widehat{EHA}=\widehat{HAF}\left(cmt\right)\)

HA LÀ CẠNH CHUNG

\(\Rightarrow\Delta EHA=\Delta FAH\left(ch-gn\right)\)

=> EA = FH (2 CẠNH TƯƠNG ỨNG)

XÉT \(\Delta EAH\)VUÔNG TẠI E VÀ \(\Delta HFE\)VUÔNG TẠI H

CÓ EA= FH (cmt)

EH LÀ CẠNH CHUNG

\(\Rightarrow\Delta EAH=\Delta HFE\left(cgv-cgv\right)\)

=> AH = EF (2 CẠNH TƯƠNG ỨNG)

CHÚC BN HỌC TỐT!!!!!!!!!!