Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI cắt ED tại J', ta cm J' ≡ J
Từ tính chất tgiác đồng dạng ta có:
EJ'/BI = AE/AB = ED/BC = ED/2BI
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J
Vậy A,I,J thẳng hàng
*OI cắt ED tại J" ta cm J" ≡ J
Hiển nhiên ta có:
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC)
Mặt khác:
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh)
=> tgiác J"DO đồng dạng với tgiác IBO
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J
Tóm lại A,I,O,J thẳng hàng
a,Xét \(\Delta\)AHB và AHD có:AH chung
BH=HD(gt)
AHB=AHD=90
vậy tam giác AHB= tam giác AHC
b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha
Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)
Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)
suy ra tam giác ABD đều
c,Dễ thấy được tam giác ADC cân tại D nên AD=DC
Xét tam giác AHD và tam giác CED có:
AD=DC
HDA=EDC(2 góc đối đỉnh)
AHD=CED=90
nên tam giác AHD=tam giác CED(ch-gn)
suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB
vậy HB=DE(đpcm)
d, I là giao điểm của CE và AH chứ bạn
Xét tam giác AIC có : AE vuông góc với IC
CH vuông góc với IA
mà CH cắt AE tại D
nên D là trực tâm của tam giác IAC
hay ID vuống góc với AC
mặt khác DF vuông góc với AC
nên I ,D,F thẳng hàng
Chúc bạn học tốt
a,Xét \(\Delta AHB\)và \(\Delta AHD\)có
AH chung
HB=HD
\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)
=> \(\Delta AHB\)=\(\Delta AHD\)
b, xem lại đề
c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)
\(\Rightarrow\widehat{DAC}=30^0\)
\(\Rightarrow\Delta DAC\)cân tại D
\(\Rightarrow DA=DC\)
Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)
\(\Rightarrow HD=DE=BH\)(ĐPCM)
d,Xem lại đề
Chúc học tốt!!!!!! :)