Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét\(\Delta ABM\) và \(\Delta ADM\) , ta có:
\(AB=AD\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\)﴾\(AM\) là phân giác của \(\widehat{BAC}\)﴿
\(AM\) là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ADM\left(c.g.c\right)\)
=> \(BM=DM\)﴾cặp cạnh tương ứng﴿
b) Xét \(\Delta DAK\) và \(\Delta BAC\)ta có :
\(\widehat{B_1}=\widehat{D_1}\)\(\left(do\Delta ABM=\Delta ADM\right)\)
\(AB=AD\left(gt\right)\)
\(\widehat{KAC}\)là góc chung
\(\Rightarrow\Delta DAK=\Delta BAC\left(g.c.g\right)\)
tu ve hinh :
xet tamgiac BAM va tamgiac DAM co : AM chung
goc BAM = goc MAD do AM la phan giac cua goc BAC (gt)
AB = AD (gt)
=> tamgiac BAM = tamgiac DAM (c - g - c)
=> BM = MD (dn) (1)
b, xet tamgiac DAK va tamgiac BAC co ; goc A chung
AB = AD (gt)
(1) => goc ABC = goc ADK (dn)
=> tamgiac DAK = tamgiac BAC (g - c - g)
a)Xét \(\Delta ABM\) và \(\Delta ADM\) có:
AB=AD(GT)
\(\widehat{BAM}=\widehat{DAM}\)(AM là tia phân giác )
AM:cạnh chung
=>\(\Delta ABM=\Delta ADM\left(c-g-c\right)\)
=>BM=DM(2 cạnh tương ứng)
b)CM trên câu a)
\(\Delta ABM=\Delta ADM\left(c-g-c\right)\)=>\(\widehat{AMB}=\widehat{AMD}\\ \)(2 góc tương ứng)
=>\(\widehat{ABM}=\widehat{ADM}\)(2 góc tương ứng)
=>\(\widehat{KBM}=\widehat{CDM}\)
ΔΔDAK=ΔΔBAC(c-g-c)
=>AK=AC(2 cạnh tương ứng)
=>ΔΔAKC cân tại A
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
Suy ra:MB=MD
b: Xét ΔADK và ΔABC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó; ΔADK=ΔABC
c: Xét ΔAKC có AK=AC
nên ΔAKC can tại A
d: Xét ΔBMK và ΔDMC có
góc BMK=góc DMC
MB=MD
góc MBK=góc MDC
Do đó;ΔBMK=ΔDMC
Suy ra: MK=MC
a ) Xét tam giác ABE và tam giác AME có :
AB = AM ( GT )
Góc BAE = Góc MAE ( AE là p/g góc A )
AE chung
=> tam giác ABE = tam giác AME ( c . g . c )
b ) Gọi giao điểm của AE với BM là H
Xét tam giác ABH và tam giác AMH có :
AB = AM ( GT )
Góc BAH = góc MAH ( AH là p/g góc A )
AH chung
=> tam giác ABH = tam giác AMH ( c . g . c )
=> BH = MH ( 2 cạnh tương ứng )
=> H là trung điểm BM
=> AE đi qua trung điểm BM ( Đpcm )
c ) và d ) : TỰ LÀM
Chúc bạn học tốt !!!
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
B A C M D K 1 2 1 1
a) BM = MD:
Xét ΔABM và ΔADM có:
+ AB = AD (gt)
+ \(\widehat{A_1}=\widehat{A_2}\) (AM là tia phân giác góc A)
+ AM là cạnh chung.
=> ΔABM = ΔADM (c - g - c)
=> BM = MD (2 cạnh tương ứng)
b) ΔDAK = ΔBAC:
Ta có: ΔACM = ΔABM (câu a)
=> \(\widehat{D_1}=\widehat{B_1}\) (2 góc tương ứng)
Xét ΔDAK và ΔBAC có:
+ \(\widehat{D_1}=\widehat{B_1}\) (cmt)
+ AD = AB (gt)
+ \(\widehat{A_{12}}\) là góc chung.
=> ΔDAK = ΔBAC (g - c -g)
c) ΔAKC cân: (xác định điểm M là giao điểm của: 2 đường trung tuyến, hoặc phân giác, hoặc đường cao, hoặc trung trực).
Tuấn Anh câu c có hai tam giác DAK = tam giác BAC rùi thì suy ra AK=AC rùi còn j