Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta HAC\)Ta có : \(HA^2-HC^2=AC^2\)
Hay \(HA^2+16^2=20^2\)
\(HA^2=20^2-16^2=144\)
\(\Rightarrow\)\(HA=12\)
Xét \(\Delta ABH\)
\(HA^2+HB^2=BA^2\)
Hay :\(9^2+12^2=BA^2\)
\(BA^2=225\)
\(\Rightarrow BA=15\)
Vậy AH = 12cm : AB = 15cm
Bạn tự vẽ hình được không ? mình không biết vẽ trên Onlinemath
mk bảo nè mk nk này vs nk Noo Phước Thịnh là 1 người đó mk gửi câu hỏi để trả lời mà ko hiểu sao trả lời mấy lần rùi mà vẫ ko đc
Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn
Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )
Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)
Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)
Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago )
\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)
A B C H
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)
\(\Rightarrow AH=4\left(cm\right)\)
Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )
Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)
\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )
Hình ảnh bạn tự vẽ nhé!
a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:
ID = IH ( vì I là trung điểm của HD)
IA là cạnh chung
=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)
b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)
\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)
BA là cạnh chung.
=> Tam giác ADB = tam giác AHB ( c.g.c)
=> D = H = 90 độ
=> AD\(\perp\)BD tại D
A B C D B H Chứng minh:
a) Vì △ABC cân tại A ⇒ AB = AC
Xét △ABH và △ACH có:
AB = AC (cmt)
\(\widehat{BAH}=\widehat{CAH}\) (gt)
AH - cạnh chung
⇒△ABH = △ACH (c.g.c)
⇒ ( tương ứng)
⇒ HB = HC ( tương ứng)
Vì \(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù)
mà \(\widehat{AHB}=\widehat{AHC}\) (cmt)
⇒ \(\widehat{AHB}=\widehat{AHC}=90^o\)
⇒ AH ⊥ BC ⇒ AH là đường cao của △ABC
b)
Xét △AHD vuông tại D và △AHE vuông tại E có:
\(\widehat{DAH}=\widehat{EAH}\text{ (gt)}\)
AH - cạnh chung
⇒ △AHD = △AHE ( cạnh huyền - góc nhọn )
⇒ HD = HE ( tương ứng )
1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(BC\cdot AH=AB\cdot AC\)
2:
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
A B C H 20 cm 9 cm 16cm 16cm
Độ dài cạnh BC là :
9 + 16 = 25 ( cm )
Có tam giác ABC vuông tại A
=> Áp dụng theo định lý Pi - ta - go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=25^2-20^2\)
\(\Rightarrow AB^2=225\)
\(\Rightarrow AB=\sqrt{225}=15\left(cm\right)\)
Có AH vuông góc vs BC
Áp dụng theo định lý Py - ta - go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(\Rightarrow AH^2=15^2-9^2\)
\(\Rightarrow AH^2=144\)
\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)
B A C H 9 16 20
BC = ?
BC - BH + CH
Mà BH = 9N cm ( gt ) ; CH = 16 cm ( gt )
\(\Rightarrow\)BC = 9 + 16
BC = 25 cm
AB = ?
Vì \(\Delta\)ABC \(⊥\)tại A
Áp dụng định lí pi - ta - go, ta có :
AB2 = BC2 - AC2
Mà BC = 25 cm ; AC = 20 cm ( gt )
\(\Rightarrow\)AB2 = 252 - 202
AB2 = 225
AB = 15 cm
AH = ?
Vì \(\Delta\)ABH\(⊥\)tại H
Áp dụng định lí Pi - ta - go , ta có :
AH2 = AB2 - BH2
Mà AB = 15 cm ( cmt ); BH = 9 cm ( gt )
\(\Rightarrow\)AH2 = 152 - 92
AH2 = 144
AH = 12 cm