Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F M K
a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:
AB=DE và AC=DF(gt)
\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai
=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)
b. vì 2 tam giác = nhau
=> BC=EF(2 cạnh tương ứng)
Mà M và K lần lượt là trung điểm của BC và EF.
=> CM=FK
c.Vì 2 tam giác ABC và DEF bằng nhau nên:
\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)
Xét \(\Delta ACM\)và \(\Delta DFK\)có:
AC=DF(gt)
\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)
CM=FK(ch/m trên)
=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)
=> AM =DK(2 cạnh tương ứng)
B C A I 1 1 2 2 M
a) xét \(\Delta ABC\)CÓ
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow80^o+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)
mà hai tia BI và CI lần lượt là tia hân giác của ^B và ^C
\(\Rightarrow\widehat{B_1}+\widehat{B_2}+\widehat{C_1}+\widehat{C_2}=100^o\)
\(\Rightarrow2\widehat{B_2}+2\widehat{C_2}=100^o\)
\(\Rightarrow2\left(\widehat{B_2}+\widehat{C_2}\right)=100^o\)
\(\Rightarrow\widehat{B_2}+\widehat{C_2}=50^o\)
XÉT \(\Delta BCI\)Có
\(\widehat{B_2}+\widehat{C_2}+\widehat{BIC}=180^o\left(đl\right)\)
THAY \(50^o+\widehat{BIC}=180^o\)
\(\Rightarrow\widehat{BIC}=180^o-50^o=130^o\)
B) TA CÓ
\(\widehat{BIC}=130^o;\widehat{BAC}=80^o\)
\(\Rightarrow\widehat{BIC}>\widehat{BAC}\left(1\right)\left(130^o>80^o\right)\)
mà \(\widehat{BIC}>\widehat{BMC}\left(2\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)
MÀ \(\widehat{BAM}< \widehat{BMC}\)HAY \(\widehat{BAC}< \widehat{BMC}\left(3\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)
TỪ (1) VÀ (2) VÀ (3) \(\Rightarrow\widehat{BIC}>\widehat{BMC}>\widehat{BAC}\)
LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ
Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)
Xét tam giác MAB và tam giác MAC
MB=MC(tam giác MBC đều)
Chung MA
AB=AC(tam giác ABC cân tại A)
=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA
=> góc BMA=30 độ
Xét tam giác BMA và tam giác BCD
góc BMA=BCD(=30)
BM=BC(tam giác MBC đều)
goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )
=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40
=> BAD=(180-40)/2=70
Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)
Xét tam giác BIA và tam giác CIA
AB=AC ( ABC cân tại A)
ABI=ACI(=10)
BI=CI(do BIC đều)
=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20
Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)
Do đó BAI=BDC hay BDC=20
mình sửa bài 1. bạn ghi đề sai " ác " quá
1. cho góc \(\widehat{xOy}\)và tia Oz nằm trong góc đó sao cho \(\widehat{xOz}=4.\widehat{yOz}\). tia phân giác Ot của góc xOz sao cho .....
x O y t z
Ta có : \(Ot\perp Oy\)nên \(\widehat{zOt}+\widehat{yOz}=90^o\)
Mà Ot là phân giác của \(\widehat{xOz}\)nên \(\widehat{zOt}=\frac{1}{2}.\widehat{xOz}\)
\(\Rightarrow\frac{1}{2}.\widehat{xOz}+\widehat{yOz}=90^o\)
Mà \(\widehat{xOz}=4.\widehat{yOz}\)
\(\Rightarrow\frac{1}{2}.4.\widehat{yOz}+\widehat{yOz}=90^o\Rightarrow3.\widehat{yOz}=90^o\Rightarrow\widehat{yOz}=30^o\)
Do đó : \(\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=4.\widehat{yOz}+\widehat{yOz}=5.\widehat{yOz}=150^o\)
a) Xét ∆DIC và ∆DAC ta có :
DC chung
CI = CA
ICD = ACD ( CD là phân giác)
=> ∆DIC = ∆DAC (c.g.c)
=> DA = DI ( tương ứng)
b) Vì ∆DIC = ∆DAC (cmt)
=> DAC = DIC = 90°
c) Ta có : IC = AC (gt)
=> ∆IAC cân tại C
Mà CD là phân giác ∆BCA
=> CD là trung trực ∆AIC
=> CD \(\perp\)AI