Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC
BN=AB.BCAC+BC .tương tự suy ra CM=AC.BCAB+BC
giả sử AB≥AC⇒BN≥CMtheo kết quả vừa tính được
có AB≥AC⇒^B≤^C⇔{
^B1≤^C1 |
^B2≤^C2 |
chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23
mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN
⇒{
BN≥CM |
BN≤CM |
⇒BN=CM⇒AB=AC⇒tam giác ABC cân
trường hợp AB≤AC làm tương tự
C1: Áp dụng hệ thức cosin vào tam giác ABC có:
\(\frac{AC}{sinB}=\frac{AN}{sinC}\)
\(\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(tự tính)
\(\Leftrightarrow AB^2=\frac{AC^2}{2}=AC\cdot AM\)
Từ đó: CM: tam giác ABM đồng dạng ACB
Suy ra: AMB=45 độ
Đây là toán lớp 1 á!