Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F H M K I
A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)
Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)
\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)
b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)
Ta có \(AH^3=12^3=1728\)
\(BC.BE.CF=25.5,4.12,8=1728\)
Vậy \(AH^3=BC.BE.CF\)
c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC
Ta gọi I là giao điểm của AH và EF
Xét \(\Delta AKI\)và \(\Delta AHM\)
có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)
\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)
Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)
\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)
Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)
\(\Rightarrow\Delta AMB\)cân tại I \(\Rightarrow MA=MB\)
Tương tự chứng minh được \(MA=MC\)
Vậy M là trung điểm BC hay ta có đpcm
a/ Có tứ giác MHNA là hcn\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) (góc nt cùng chắn \(\stackrel\frown{AN}\))
Mà \(\widehat{AHN}=\widehat{ACH}\) (cùng phụ vs \(\widehat{HAN}\))
\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)
Xét \(\Delta AMN\) và \(\Delta ACB\) có:
\(\widehat{AMN}=\widehat{ACH}\left(CMT\right)\)
\(\widehat{MAN}\) : góc chung
\(\Rightarrow\Delta AMN\sim\Delta ACB\left(gg\right)\)
\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Leftrightarrow AM.AB=AN.AC\)
b/ Có \(HB=\frac{AB^2}{BC}\)
\(HC=\frac{AC^2}{BC}\)
\(\Rightarrow\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)
c/ Xét \(\Delta AHB\) vuông tại H,\(MH\perp AB\)
\(\Rightarrow MA.MB=MH^2\)(1)
tương tự\(\Rightarrow NA.NC=HN^2\) (2)
\(HB.HC=AH^2=MN^2\) (2 đường chéo bằng nhau)(3)
Xét \(\Delta MHN\) vuông tại H
\(\Rightarrow MH^2+HN^2=MN^2=AH^2\)(4)
Từ (1),(2),(3),(4)\(\Rightarrow HB.HC=MA.MB+NA.NC\)
A B C H 12 20 E
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)
\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm
b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1)
Áp dụng định lí Pytago cho tam giác AHC vuông tại H
\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2)
Từ (1) ; (2) suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )
ai tích mình mình tích lại cho