Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( Gọi giao điểm của AD và MN là F )
Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D
có: AB=AC (gt)
AD là cạnh chung
=> tam giác ABD = tam giác ACD ( cạnh huyền- cạnh góc vuông)
=> góc BAD = góc CAD ( 2 góc tương ứng)
Xét tam giác AMD vuông tại M và tam giác AND vuộng tại N
có: góc BAD = góc CAD ( cmt)
AD là cạnh chung
=> tam giác AMD = tam giác AND ( cạnh huyền - góc nhọn)
=> AM = AN ( 2 cạnh tương ứng)
Xét tam giác MAF và tam giác NAF
có: MA=NA ( cmt)
góc BAD = góc CAd ( cmt)
AF là cạnh chung
=> tam giác MAF = tam giác NAF ( c-g-c)
=> MF= NF ( 2 cạnh tương ứng) (1)
góc AFM = góc AFN ( 2 góc tương ứng)
mà góc AFM + góc AFN = 180 độ ( kề bù)
=> góc AFM + góc AFM = 180 độ
2 góc AFM =180 độ
góc AFM = 180 độ : 2
góc AFM = 90 độ
\(\Rightarrow AD\perp MN⋮F\) ( định lí) (2)
Từ (1); (2) => AD là đường trung trực của MN
b) ta có: tam giác AMD = tam giác AND ( phần a)
=> góc MDF = góc NDF ( 2 góc tương ứng)
MD = ND ( 2 cạnh tương ứng)
mà MD = ED ( gt)
=> ND = ED ( = MD)
ta có: góc MDF + góc FDC + góc EDC = 180 độ
thay số: góc MDF + 90 độ + góc EDC = 180 độ
góc MDF + góc EDC = 90 độ
=> góc MDF + góc EDC = góc NDF + góc NDC ( = góc FDC)
=> góc EDC = góc NDC ( góc MDF = góc NDF)
Xét tam giác CDN và tam giác CDE
có: ND = ED( cmt)
góc NDC = góc EDC ( cmt)
CD là cạnh chung
=> tam giác CDN = tam giác CDE ( c-g-c)
=> góc CND = góc CED = 90 độ ( 2 góc tương ứng)
=> góc CED = 90 độ
\(\Rightarrow CE\perp DE⋮E\) ( định lí)
c) ta có: tam giác ABD = tam giác ACD ( phần a)
=> BD = CD ( 2 cạnh tương ứng)
mà BD +CD = BC ( D thuộc BC)
=> BD +BD = BC
thay số: 2 BD = 10
BD = 10 :2
BD = 5 cm
Xét tam giác BDM vuông tại M
có: \(MD^2+BM^2=BD^2\) ( py- ta -go)
thay số: \(MD^2+3^2=5^2\)
\(MD^2+9=25\)
\(MD^2=25-9\)
\(MD^2=16\)
\(\Rightarrow MD=4cm\)
mà MD = ME ( phần b)
=> ME = 4cm
Chúc bn học tốt !!!
Trả lời:
P/s: Học kém Hình nên chỉ đucợ mỗi câu a
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
~Học tốt!~
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABC, ta được:
AB2+AC2=32+62=45=BC2=>BC=\(\sqrt{45}\)cm
b) Xét \(\Delta\)BAD và \(\Delta\)EAD:
AE=AB(Do cùng bằng 3 cm)
BAD=EAD
AD chung
=>\(\Delta\)BAD=\(\Delta\)EAD(c-g-c)
c) Xét \(\Delta\)ABC và \(\Delta\)AEM:
A chung
AB=AE
ABC=AEM( Suy ra trực tiếp từ câu b)
=>\(\Delta\)ABC=\(\Delta\)AEM=>AC=AM=>\(\Delta\)CAM vuông cân tại A
d) Áp dụng Định lý Pythagoras cho tam giác vuông CAM, ta được:
AC2+AM2=MC2=>2.AC2=MC2( Do \(\Delta\)CAM vuông cân tại A)
Lại có:BC2=AC2+AB2
Do: AC>AB(gt)
Nên:MC>BC
Mặt khác:\(\Delta\)ABC=\(\Delta\)AEM(chứng minh trên)=>BC=ME
Suy ra MC>ME
Hình tự vẽ
phần a cậu có thể tự làm :))
b+c)Xét \(\Delta\)ABD và\(\Delta\) EBD có:
AB=AE(gt)
BD(chung)
góc B1 = góc B2
=> \(\Delta\)ABD=\(\Delta\)EBD
=> AD=DE
=>\(\Delta\)ADE cân tại D(2)
Mà BD là tia pg(1)
Từ (1) và (2) => BD là đường cao của tam giác ABC
=> BD\(\perp\) AE
~Hok tốt~
\(\Delta\)
À ừ :vv tớ giải all lại nek
a) \(\Delta\)ABC là tam giác vuông
b+c) Xét \(\Delta\)ABD và \(\Delta\) EBD có:
AB=BE(gt)
BD(chung)
Góc B1=góc B2
=>\(\Delta\)ABD=\(\Delta\)EBD
=>AD= ED
=>\(\Delta\)ADE cân tại D(1)
Mà BD là tí pg của góc B(2)
Từ (1) và (2) => BD là đường cao của \(\Delta\)ABC
=>BD\(\perp\)AE
d) Ta có: BD\(\perp\) FC
AE\(\perp\)BC
Mà D là trực tâm
=> AE // FC
~Hok tốt :^~