Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E I D
a)Xét tg ABI vuông tại A và tg EBI vuông tại E
Có góc ABI=goc EBI (vì BI là PG góc B)
BI chung
=> tg ABI=tgEBI(ch-gn)
=>AI =IE
b)tương tự câu a
c)Xét tg BDC
có ED vuông góc BC
và CA vuông góc BD
mà ED và AC cắt nhau ở I
=> I là trực tâm
=> BI vuông góc DC(1)
xét tg BAE
BI là pg
EB=BA
=>BI vuông góc với AE (2)
Từ (1), (2) => AE//DC
a: Xét ΔBAN và ΔBMN có
BA=BM
\(\widehat{ABN}=\widehat{MBN}\)
BN chung
Do đo: ΔBAN=ΔBMN
Suy ra: NA=NM và \(\widehat{BAN}=\widehat{BMN}=90^0\)
=>NM\(\perp\)BC
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB
=>ΔABM đều
=>\(\widehat{ABC}=60^0\)
tam giác BMC có: BM=BC
suy ra tam giác BMC là tam giác cân
suy ra góc BMC= góc BCM