\(\Delta ABC\)vuông tại A, gọi M , N lần lượt là 2 điểm trên cạnh AB và AC sao cho AM...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

A B C M N

khi nào bt giải thì giải :)) 

14 tháng 6 2019

bài này dùng Py-ta-go khá nhìu nhé, a tự hiểu -,- 

\(1=\sin^2\alpha+\cos^2\alpha=BN^2+CM^2=AB^2+AC^2+AN^2+AM^2=BC^2+AN^2+AM^2\)

\(=BC^2+\frac{1}{9}\left(AB^2+AC^2\right)=BC^2+\frac{1}{9}BC^2=\frac{10}{9}BC^2\)\(\Rightarrow\)\(BC=\sqrt{\frac{9}{10}}=\frac{3\sqrt{10}}{10}\)

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

26 tháng 8 2019

Đặt AM = a ; AN = b thì AB = 3a ; AC = 3b

Áp dụng định lý Py-ta-go vào các tam giác vuông ABN và ACM , ta có :

\(AB^2+AN^2 = BN^2 ; AM^2 + AC^2 = CM^2\)

\(\Rightarrow\) \(9a^2 +b^2 = sin^2\alpha ; a^2 +9b^2 = cos^2\alpha\)

Do đó : \(10(a^2+b^2) = sin^2\alpha + cos^2\alpha = 1\)

\(a^2+b^2 = \dfrac{1}{10}\)

Ta có : \(BC^2 = (3a)^2 + (3b)^2 \)

\(BC^2 = 9(a^2+b^2) \)

\(BC^2 = \dfrac{9}{10}\)

\(\Leftrightarrow\) \(BC= \sqrt{\dfrac{9}{10}}\)

\(\Rightarrow\) \(BC = \dfrac{3}{10} \sqrt{10}\)

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

29 tháng 2 2020

Bài 1 :

- Ta có : \(\Delta ABC\) vuông tại C ( GT )

=> \(\widehat{A}+\widehat{B}=90^o\)

=> \(\left\{{}\begin{matrix}SinA=CosB\\tangA=CotgB\end{matrix}\right.\)

- Ta có : \(\frac{SinA}{CosB}-\frac{tangA}{cotgB}=\frac{SinA}{SinA}-\frac{cotgB}{cotgB}=1-1=0\)

Bài 3 :

- Ta có : \(75^o+15^o=90^o\)

=> \(Sin15^o=Cos75^o\)

- Ta lại có : \(1+tan^275^o=\frac{1}{Cos^275^o}\) ( I )

\(tg75^o=2+\sqrt{3}\)

=> \(tg^275^o=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)

Thay \(tg^275^o=7+4\sqrt{3}\) vào ( I ) ta được :

\(1+7+4\sqrt{3}=\frac{1}{Cos^275^o}\)

=> \(Cos75^o=\frac{1}{2\sqrt{2+\sqrt{3}}}\)

=> \(Sin15^o=\frac{1}{2\sqrt{2+\sqrt{3}}}\)

29 tháng 2 2020

giúp mình với Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhAkai HarumaNguyễn Lê Phước ThịnhPhạm Lan HươngHoàng Thị Ánh Phương Trung NguyenNguyễn Thành TrươngNatsu Dragneel 2005

a, ta có \(\cos^2\alpha\)+  \(\sin^2\alpha\)= 1

                  1/5 + \(\cos^2\alpha\)= 1

                               \(\cos^2\alpha\)= 4/5

\(4\cos^2\alpha\)+6 \(\sin^2\alpha\)= 4 . 4/5 + 6.1/5=22/5

b, \(\sin\alpha\)= 2/3 

\(\sin^2\alpha\)= 4/9

\(\cos^2\alpha=\frac{5}{9}\)

\(5\cos^2\alpha+2\sin^2=\frac{5.5}{9}+\frac{2.4}{9}=\frac{33}{9}\)

#mã mã#