Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AM là đường trung tuyến (gt). => M là trung điểm của BC.
Xét tam giác ABC vuông tại A: AM là đường trung tuyến (gt).
=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
=> AM = MB = MC = \(\dfrac{1}{2}\) BC (do M là trung điểm của BC).
Xét tam giác AMB có: AM = MB (cmt). => Tam giác AMB cân tại M.
Mà MD là đường cao (MD \(\perp\) AB).
=> MD là phân giác ^AMB (Tính chất các đường trong tam giác cân).
Xét tam giác AMC có: AM = MC (cmt). => Tam giác AMC cân tại M.
Mà ME là đường cao (ME \(\perp\) AC).
=> ME là phân giác ^AMC (Tính chất các đường trong tam giác cân).
Xét tam giác MBD và tam giác MAD có:
+ MD chung.
+ MB = AM (cmt).
+ ^BMD = ^AMD (MD là phân giác ^AMB).
=> Tam giác MBD = Tam giác MAD (c - g - c).
=> ^MBD = ^MAD (2 góc tương ứng).
=> ^MBD = ^MAD = \(90^o\). => BD \(\perp\) AB. (1)
Xét tam giác MAE và tam giác MCE có:
+ ME chung.
+ MC = AM (cmt).
+ ^AME = ^CME (ME là phân giác ^AMC).
=> Tam giác MAE = Tam giác MCE (c - g - c).
=> ^MAE = ^MCE (2 góc tương ứng).
=> ^MAE = ^MCE = \(90^o\). => CE \(\perp\) AB. (2)
Từ (1); (2) => BD // CE (Từ \(\perp\) đến //).
b) Ta có: DE = DA + AE.
Mà DA = DB (Tam giác MBD = Tam giác MAD).
EA = EC (Tam giác MAE = Tam giác MCE).
=> DE = BD + CE (đpcm).
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
A B C D E M N I 1 2 1
(Hình ảnh chỉ mang tính chất minh họa)
a, Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{B1}=\widehat{C2}\left(1\right)\)
Mà: \(\widehat{C2}=\widehat{C1}\left(đ.đỉnh\right)\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\widehat{B1}=\widehat{C1}\)
Xét \(\Delta MDB\) và \(\Delta NCE\) vuông tại \(D;E\) có:
\(BD=CE\left(gt\right)\)
\(\widehat{B1}=\widehat{C1}\left(cmt\right)\)
\(\Rightarrow\Delta MDB=\Delta NEC\left(cgv-gnk\right)\)
\(\Rightarrow MD=NE\left(2c.t.ứng\right)\)
b, Ta có: \(\hept{\begin{cases}MD\perp BE\\NE\perp BE\end{cases}\Rightarrow MD//NE}\)
\(\Rightarrow\widehat{ENI}=\widehat{DMI}\left(so-le-trong\right)\)
Xét \(\Delta IMD\) và \(\Delta INE\) vuông tại \(D;E\) có:
\(DM=EN\left(cmt\right)\)
\(\widehat{IMD}=\widehat{INE}\left(cmt\right)\)
\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gnđ\right)\)
\(\Rightarrow ID=IE\left(2c.t.ứ\right)\)
\(\Rightarrow I\) là trung điểm của \(DE\left(đpcm\right)\)
P/s: Sửa đề câu a, Chứng minh \(MD=NE\)
Sửa đề câu a thành : Chứng minh: MD = NE
ABCDINEM==
GT | △ABC (AB = AC). D BC ; BD = CE DM ⊥ BC (M AB) ; EN ⊥ BC MN ∩ DE = { I } |
KL | a, MD = ME b, ID = IE |
Bài giải:
a, Vì △ABC có AB = AC => △ABC cân tại A => ABC = ACB
Mà ACB = ECN (2 góc đối đỉnh)
=> ABC = ECN
Xét △MDB vuông tại D và △NEC vuông tại E
Có: MBD = NCE (cmt)
BD = EC (gt)
=> △MDB = △NEC (cgv-gnk)
=> MD = NE (2 cạnh tương ứng)
b, Xét △MDI vuông tại D có: DMI + MID = 90o
Xét △IEN vuông tại E có: INE + EIN = 90o
Mà MID = EIN (2 góc đối đỉnh)
=> DMI = INE
Xét △MDI vuông tại D và △NEI vuông tại E
Có: MD = NE (cmt)
DMI = INE (cmt)
=> △MDI = △NEI (cgv-gnk)
=> ID = IE (2 cạnh tương ứng)
Và I nằm giữa D, E
=> I là trung điểm của DE
a, xét \(\Delta\)BEM và \(\Delta\)CFM có:
\(\widehat{B}\)=\(\widehat{C}\)(gt)
BM=CM(trung tuyến AM)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)
b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)
Gọi O là giao của AM và EF
xét tam giác OAE và tam giác OAF có:
AO cạnh chung
\(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)
vì AB=AC mà EB=FC nên AE=AF
\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)
\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)
từ (1) và (2) suy ra AM là đg trung trực của EF
c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)
ta có tam giác BAM=tam giác CAM(c.g.c)
=> AD là p/g của góc BAC(2)
từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng
a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C
Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F
BM=CM (BM là trung tuyến)
Góc B=Góc C
=> Tam giác BEM=Tam giác CFM(ch-gn)
b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC
Mà AB=AC=> AE=AF(2)
Từ 1 và 2 => AM là trung trực của EF