Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ
=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC
b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)
Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)
Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
suy ra: \(\Delta ABC~\Delta HBA\) (g.g)
b) Xét \(\Delta AIH\)và \(\Delta AHB\)có:
\(\widehat{AIH}=\widehat{AHB}=90^0\)
\(\widehat{IAH}\) chung
suy ra: \(\Delta AIH~\Delta AHB\) (g.g)
\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AI.AB=AH^2\) (1)
Xét \(\Delta AHK\)và \(\Delta ACH\)có:
\(\widehat{HAK}\)chung
\(\widehat{AKH}=\widehat{AHC}=90^0\)
suy ra: \(\Delta AHK~\Delta ACH\) (g.g)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)
\(\Rightarrow\)\(AK.AC=AH^2\) (2)
Từ (1) và (2) suy ra: \(AI.AB=AK.AC\)
c) \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2
Tứ giác \(HIAK\)có: \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)
\(\Rightarrow\)\(HIAK\)là hình chữ nhật
\(\Rightarrow\)\(AH=IK=4\)cm
Ta có: \(AI.AB=AK.AC\) (câu b)
\(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)
Xét \(\Delta AIK\)và \(\Delta ACB\)có:
\(\widehat{IAK}\)chung
\(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)
suy ra: \(\Delta AIK~\Delta ACB\) (c.g.c)
\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)
\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2
A, Có : góc HBA = góc ABC ( chung 1 góc )
=> tam giác HBA đông dạng với tam giác ABC ( g.g)
B, câu (A) => HA/AC = BA/BC
=> AB.AC = AH.BC
Tk mk nha