\(\Delta ABC\)vuông tại A có AB=6cm, AC=8cm. AM là đường trung tuyến..

a) Tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

a) áp dụng định lý Pytago ta có:

    BC2 = AB2 + AC2 

\(\Rightarrow\)BC2 = 62 + 82 = 100

\(\Rightarrow\)BC = \(\sqrt{100}\)= 10

\(\Delta\)ABC vuông tại A có AM là trung tuyến 

\(\Rightarrow\)AM = \(\frac{BC}{2}\)\(\frac{10}{2}\)= 5cm

b) AKMN là hình chữ nhật vì \(\widehat{AKM}\)\(\widehat{KAN}\)\(\widehat{ANM}\)= 900

c) KM \(\perp\)AB;    AB \(\perp\)AC

\(\Rightarrow\)KM // AC

\(\Delta ABC\)có KM // AC; MB = MC

\(\Rightarrow\)KA = KB

\(\Rightarrow\)KM là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)KM = \(\frac{AC}{2}\)

CM tương tự ta có:  NC =\(\frac{AC}{2}\)

suy ra KM = NC

mà KM // NC

nên KMNC là hình bình hành

21 tháng 8 2019

giup mình với mai đi hc rồi

5 tháng 9 2018

vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.

\(\Rightarrow\)góc M = 90 độ

\(\Rightarrow FH//ME ; FM//HE\)

\(\Rightarrow\)tứ giác FMEH là hình chữ nhật 

\(\Rightarrow\)ME=FH

a ) tứ giác MFHE có :

\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )

hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)

\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)

\(\Rightarrow\widehat{EMF}=90^o\)

\(\Rightarrow FM\perp ME\left(dhnb\right)\)

mà \(HE\perp ME\left(gt\right)\)

\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)

\(\Rightarrow FHEM\)là hình thang

\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)

\(\Rightarrow FHEM\)là hình thang cân

\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )

b ) kẻ EF

có M là trung điểm của BC ( gt )

\(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow AM\)là đường cao

\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)

xét \(\Delta MAD\)và \(\Delta MCE\)

\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)

\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )

xét \(\Delta ADK\)và \(\Delta AEK\)có :

\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )

mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp DK\left(dhnb\right)\)

AM là đường cao \(\Rightarrow AM\perp BC\)

\(\Rightarrow DK//BC\)

\(hayBK//MC\)

\(\Rightarrow MDKC\)là hình thang

5 tháng 9 2016

Bạn tự vẽ hình

a/ Dễ thấy ADHE là hình chữ nhật vì góc A = góc E = góc D = 90 độ

=> góc ADE = góc AHE (t/c hình chữ nhật)

Mà góc AHE + góc EHC = 90 độ ; góc ECH + góc EHC = 90 độ

=> Góc AHE = góc ECH hay góc C = góc ADE

b/ Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/677639.html

24 tháng 12 2019

Huhu ai giúp mình với T_T

24 tháng 12 2019

M A B C D E O I K 1 2

a) Xét tứ giác ADME có:

\(MD//AE\left(MD//AC\right)\)

\(ME//AD\left(ME//AB\right)\)

\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )

b) Vì ADME là hình bình hành ( câu a ) 

\(\Rightarrow DE\)cắt \(AM\)tại trung điểm 

Mà O là trung điểm DE

\(\Rightarrow\)O là trung điểm AM

\(\Rightarrow\)A,O,M thẳng hàng (đpcm)

c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến

\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)

\(\Rightarrow\Delta AOI\)cân tại O

\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)

Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )

                           \(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)

CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)

Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)

Vậy \(\widehat{IOK}=120^o\)

#Bảo___