\(\Delta ABC\)vuông cân tại \(A\). Một đường thẳng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

H A E B C d

Trường hợp đường thẳng d không cắt cạnh BC \(\Delta AHB=\Delta CEA\)cạnh huyền và một góc nhọn bằng nhau , do đó : CE = AH

Tam giác AHB vuông tại H,theo định lý Pitago, ta có :

\(AH^2+BH^2=AB^2\)không đổi, suy ra \(BH^2+CE^2=AB^2\)không đổi.Trường hợp đường thẳng d cắt cạnh BC tại một điểm nằm giữa B và C, ta vẫn có : \(BH^2+CE^2=AB^2\)không đổi.Nếu đường thẳng d không trùng với đường thẳng AB thì điểm \(E\equiv A\)còn điểm \(E\equiv C\)khi đó : EH = BA , EK = 0 nên \(BH^2+CE^2=AB^2\)không đổi

Vậy tổng \(BH^2+CE^2\)không phụ thuộc vào vị trí của đường thẳng d.

DM
31 tháng 1 2018

Đề bài không đúng.

Đặt \(\alpha=\widehat{HCA};AB=c;AC=b\) thì   \(\widehat{BAH=\alpha}\) và  \(KB=c\sin\alpha;HC=b\cos\alpha\) từ đó

                                               \(KB^2+HC^2=c^2\sin^2\alpha+b^2\cos^2\alpha\)

Nếu \(\alpha=45^0\)thì   \(KB^2+HC^2=c^2\sin^245^0+b^2\cos^245^0=\frac{1}{2}\left(c^2+b^2\right)\).

Nếu  \(\alpha=30^0\) thì \(KB^2+HC^2=c^2\sin^230^0+b^2\cos^230^0=\frac{1}{4}\left(c^2+3b^2\right)\).

Nếu  \(\alpha=60^0\) thì  \(KB^2+HC^2=c^2\sin^260^0+b^2\cos^260^0=\frac{1}{4}\left(3c^2+b^2\right)\).

Như vậy tổng \(KB^2+HC^2\) thay đổi khi đường thẳng d quay quanh A.

1 tháng 2 2018

em cảm ơn

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

tích mình với

ai tích mình

mình tích lại

thanks

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0
19 tháng 2 2018

a, Xét tam giác vuông ABH và tam giác vuông MBH có góc MBH = góc ABH (do BH là phân giác góc B) HB chung => Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )

b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng) => H thuộc trung trực của AM(1) Ta còn có BM = BA ( cạnh tương ứng ) => B thuộc trung trực của AM (2) Từ (1) và (2) suy ra BH là trung trực của AM

c, Xét tam giác BCN có NM vuông góc với BC => NM là đường cao ứng với cạnh BC có CA vuông góc với BN => CA là đường cao ứng với cạnh BN mà chúng giao nhau ở H nên H là trực tâm  nên BH là đường cao ứng với cạnh CN => BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM) => CN song song với AM

d, Từ câu trên ta đã chứng minh BH vuông góc vói CN

19 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta ABH\)vuông và \(\Delta MBH\)vuông có: Cạnh huyền BH chung

\(\widehat{ABH}=\widehat{MBH}\)(BH là đường phân giác của \(\Delta ABC\))

=> \(\Delta ABH\)vuông = \(\Delta MBH\)vuông (ch - gn) (đpcm)

7 tháng 2 2018

B B C C A A D D E E H H K K

a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)

Lại có DC = DB + BC = CE + BC = BE

Vậy thì \(\Delta DKC=\Delta EHB\)  (Cạnh huyền góc nhọn)

\(\Rightarrow BH=CK\)

c) Xét hai tam giác vuông ABH và ACK có : 

BH = CK

AC = AC

\(\Rightarrow\Delta BAH=\Delta CAK\)  (Cạnh huyền - cạnh góc vuông)