\(\Delta ABC\),trực tâm H.

CM hệ thức \(AB^2+HC^2=BC^2+HA^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

gọi M;N;K là hình chiếu của A;B;C trên BC;AC;AB

A B C M K N H

Xét tan giác BHK và tam giác CHN là 2 tam giác đồng dạng (dễ dàng chứng minh) =>\(\frac{KH}{HB}=\frac{HN}{HC}< =>KH.HC=HB.HN\)

AB2=BN2+NA2=(BH+HN)2+HA2-HN2=BH2+2BH.HN+HA2=BH2+2CH.HK+HA2

AC2=AK2+KC2=(CH+HK)2+AH2-HK2=CH2+2CH.HK+AH2

BC2=CK2+KB2=(CH+HK)2+HB2-KH2=CH2+2CH.HK+HB2

=> AB2+HC2=AC2+HB2=BC2+HA2= CH2+2CH.HK+HB2+HA2

9 tháng 8 2019

giải giúp mk câu b) thôi

9 tháng 8 2019

A B C D E F H

a) Áp dụng định lí pitago.

Ta có: \(AB^2=AD^2+BD^2=BE^2+AE^2\)

\(HC^2=HD^2+DC^2=HE^2+EC^2\)

=> \(AB^2+HC^2=AD^2+BD^2+HD^2+DC^2\)

\(=\left(AD^2+DC^2\right)+\left(BD^2+HD^2\right)=AC^2+BH^2\) (1)

và \(AB^2+HC^2=BE^2+AE^2+HE^2+EC^2\)

\(=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=BC^2+AH^2\)(2)

Từ (1) , (2) Ta có: \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)

b) Ta có: \(S_{AHB}+S_{AHC}+S_{BHC}=S_{ABC}=S\)

\(AB.HC=AB\left(CF-FH\right)=AB.CF-AB.FH\)

\(=2S_{ABC}-2S_{AHB}=2S-2S_{ABH}\)

Tương tự: \(BC.HA=2S-2S_{BHC}\)

                 \(CA.HB=2S-2S_{AHC}\)

Cộng lại ta có:

\(AB.HC+BC.AH+CA.HB=6S-2\left(S_{AHB}+S_{AHC}+S_{BHC}\right)\)

\(=6S-2S=4S\)(đpcm)

7 tháng 11 2017

A B C I F G H x y z

dat HI=x, HF=y, HG=z

ta co \(\frac{SBHC}{SABC}=\frac{\frac{1}{2}.HI.BC}{\frac{1}{2}AI.BC}=\frac{HI}{AI}=\) \(\frac{x}{x+8}\)

ttu \(\frac{SAHC}{SABC}=\frac{y}{y+\sqrt{14}}\) \(\frac{SHAB}{SABC}=\frac{z}{z+\sqrt{44}}\)

cộng vế vs vế  \(\frac{x}{x+8}+\frac{y}{y+\sqrt{14}}+\frac{z}{z+\sqrt{44}}=\frac{SHBC+SHAC+SHAB}{SABC}=1\) (1)

do \(\Delta AHF\simeq\Delta BHI\rightarrow\frac{HF}{HI}=\frac{y}{x}=\frac{AH}{BH}=\frac{8}{\sqrt{14}}\Rightarrow y=\frac{8}{\sqrt{14}}x\)

ttu \(\Delta AHG\simeq\Delta CHI\Rightarrow z=\frac{8}{\sqrt{44}}x\)

the vao 1 ta co \(\frac{x}{x+8}+\frac{\frac{8}{\sqrt{14}}x}{\frac{8}{\sqrt{14}}x+\sqrt{14}}+\frac{\frac{8x}{\sqrt{44}}}{\frac{8x}{\sqrt{44}}+\sqrt{44}}=1\)

\(\Leftrightarrow\frac{x}{x+8}+\frac{8x}{8x+14}+\frac{8x}{8x+44}=1\)

 giải ra bn có  x=2

ap dung dl pitago vao tam giac vuong BHI \(BI^2=14-x^2=14-4=10\Rightarrow BI=\sqrt{10}\)

                             . ............................HIC \(IC=\sqrt{40}\)

\(\Rightarrow BC=BI+IC=\sqrt{10}+\sqrt{40}\)

MA AI=\(AH+HI=8+2=10\)

\(\Rightarrow SABC=\frac{10.\left(\sqrt{10}+\sqrt{40}\right)}{2}=15\sqrt{10}\)

30 tháng 10 2018

\frac{x}{x+8}+\frac{\frac{8}{\sqrt{14}}x}{\frac{8}{\sqrt{14}}x+\sqrt{14}}+\frac{\frac{8x}{\sqrt{44}}}{\frac{8x}{\sqrt{44}}+\sqrt{44}}=1x+8x​+14​8​x+14​14​8​x​+44​8x​+44​44​8x​​=

18 tháng 9 2016

H I O A B C M K

Dựng hình vẽ như trên. Dễ thấy O là tâm của đường tròn ngoại tiếp tam giác ABC => OA = OK và OM vuông góc BC

=> OM là đường trung bình của tam giác AHK => OM // AH và OM = 1/2AH

Dễ dàng chứng minh được O,I,H thẳng hàng và OH vuông góc OM , AH vuông góc HI

Ta có : \(\sqrt{\frac{OI^2+OM^2}{IH^2+HA^2}}=\sqrt{\frac{IM^2}{AI^2}}=\frac{IM}{AI}=\frac{1}{2}\)

18 tháng 9 2016

Cm OH vuong goc voi OM kieu j

12 tháng 7 2018

ai tích mình mình tích lại cho