\(\Delta ABC\),qua điểm E trên AC kẻ DE//BC ,kẻ EF//AB (D \(\in\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

Huhu ai giúp mình với T_T

24 tháng 12 2019

M A B C D E O I K 1 2

a) Xét tứ giác ADME có:

\(MD//AE\left(MD//AC\right)\)

\(ME//AD\left(ME//AB\right)\)

\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )

b) Vì ADME là hình bình hành ( câu a ) 

\(\Rightarrow DE\)cắt \(AM\)tại trung điểm 

Mà O là trung điểm DE

\(\Rightarrow\)O là trung điểm AM

\(\Rightarrow\)A,O,M thẳng hàng (đpcm)

c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến

\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)

\(\Rightarrow\Delta AOI\)cân tại O

\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)

Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )

                           \(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)

CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)

Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)

Vậy \(\widehat{IOK}=120^o\)

#Bảo___

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

a)

Vì $M, N$ lần lượt là trung điểm của $AB,AC$ nên:

\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{2}\)

Xét tam giác $AMN$ và $ABC$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \frac{AM}{AB}=\frac{AN}{AC}\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ABC\) (c.g.c)

b)

Áp dụng định lý Pitago cho tam giác vuông $ABC$:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\) (cm)

Ta có:

\(\frac{AB.AC}{2}=S_{ABC}=\frac{AH.BC}{2}\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\) (cm)

c)

Vì \(NP\parallel AB\) nên áp dụng định lý Ta-lét ta có:

\(\frac{NP}{AB}=\frac{CN}{CA}=\frac{1}{2}\Rightarrow NP=\frac{AB}{2}; NC=\frac{AC}{2}\)

Mặt khác, \(NP\parallel AB, AB\perp AC\Rightarrow NP\perp AC\)

Do đó:

\(S_{NPC}=\frac{NP.NC}{2}=\frac{\frac{AB}{2}.\frac{AC}{2}}{2}=\frac{AB.AC}{8}\)

\(S_{ABC}=\frac{AB.AC}{2}\)

\(\Rightarrow \frac{S_{NPC}}{S_{ABC}}=\frac{AB.AC}{8}: \frac{AB.AC}{2}=\frac{1}{4}\)

14 tháng 3 2019

a) C/M DE//BC và ΔADE∼ΔABC

Ta có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (do \(\dfrac{4}{12}=\dfrac{5}{15}=\dfrac{1}{3}\))

⇒ DE//BC (ĐL Ta-lét đảo)

⇒ ΔADE∼ΔABC

b) Tứ giác BDEF hình gì

Ta có DE//BF (do DE//BC:c/ma)

EF//BD (do EF//AB:gt)

Vậy BDEF là hình bình hành

c) C/M ΔCEF∼ΔEAD

Ta có \(\widehat{ADE}=\widehat{ABC}\) (đồng vị do DE//BC)

Lại có \(\widehat{EFC\:}=\widehat{ABC}\) (đồng vị do EF//AB)

\(\widehat{ADE}=\widehat{EFC\:}\)

\(\widehat{BAC}=\widehat{FEC}\) (đồng vị do EF//AB)

Vậy ΔCEF∼ΔEAD (g-g)

14 tháng 3 2019

Cảm ơn bạn!!

13 tháng 2 2018

Hỏi đáp Toán

13 tháng 2 2018

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

17 tháng 2 2018

t ghi nhầm cái dòng thứ 2 từ dưới lên la ME voi HE đều vuong goc voi AB

17 tháng 2 2018

 Gọi D,H,K lần lượt la TĐ của AB,BC,AC

 Do ME vuong goc voi AB

=> ME\(\le MD\)

Tuong tự =>\(MF\le MK\)

=>SMEAF\(\le MD.MK\)

Dấu bằng xay ra khi E trung D,K trung F

 Từ đó sẽ chứng minh đươc ME va HE vua la duong cao vua la trung tuyen

=> M trung H

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
1 tháng 9 2017

\(\text{a. Ta có:}\) \(\widehat{ADE}+\widehat{EDH}=90^0\)

               \(\widehat{AHE}+\widehat{EHC}=90^0\)

\(\text{Mà}\) \(\widehat{ADE}=\widehat{AHE}\left(=\widehat{DEH}\right)\)\(\text{vì DHEA là hình chữ nhật nên các đường chéo bằng nhau}\)\(\text{và cắt nhau tại trung điểm mỗi đường nên tạo ra các tam giác cân.}\)

\(\Rightarrow\widehat{EDH}=\widehat{EHC}\)

\(\text{Xét 2 tam giác vuông DHE và HEC có: }\)\(\widehat{EDH}=\widehat{EHC}\left(cmt\right)\)

\(\Rightarrow\Delta DHE\infty\Delta HEC\left(gg\right)\)\(\Rightarrow\widehat{DEH}=\widehat{C}\)

\(\text{Mà}\)\(\widehat{DEH}=\widehat{ADE}\left(slt;AD\text{//}HE\right)\)

\(\widehat{ADE}=\widehat{C}\)\(\text{(đpcm)}\)

\(\text{b. Câu này hình như sai đề rồi. Vì từ đỉnh A chỉ kẻ được 1 đường vuông góc với BC thôi. }\)

\(\text{Đề bài chứng minh }\)\(AM⊥BC\)\(\text{nghĩa là phải chứng minh }\)\(M\text{ ≡ H}\)\(\text{thì khi đó }\)\(\Delta ABC\)\(\text{là tam giác cân.}\)

\(\text{(nếu đề là tìm điều kiện của }\)\(\Delta ABC\)\(\text{để}\) \(AM⊥BC\)\(\text{thì được).}\)