Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M A B C D E O I K 1 2
a) Xét tứ giác ADME có:
\(MD//AE\left(MD//AC\right)\)
\(ME//AD\left(ME//AB\right)\)
\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )
b) Vì ADME là hình bình hành ( câu a )
\(\Rightarrow DE\)cắt \(AM\)tại trung điểm
Mà O là trung điểm DE
\(\Rightarrow\)O là trung điểm AM
\(\Rightarrow\)A,O,M thẳng hàng (đpcm)
c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến
\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)
\(\Rightarrow\Delta AOI\)cân tại O
\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)
Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )
\(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)
CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)
Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)
Vậy \(\widehat{IOK}=120^o\)
#Bảo___
Lời giải:
a)
Vì $M, N$ lần lượt là trung điểm của $AB,AC$ nên:
\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{2}\)
Xét tam giác $AMN$ và $ABC$ có:
\(\left\{\begin{matrix} \text{chung góc A}\\ \frac{AM}{AB}=\frac{AN}{AC}\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ABC\) (c.g.c)
b)
Áp dụng định lý Pitago cho tam giác vuông $ABC$:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\) (cm)
Ta có:
\(\frac{AB.AC}{2}=S_{ABC}=\frac{AH.BC}{2}\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\) (cm)
c)
Vì \(NP\parallel AB\) nên áp dụng định lý Ta-lét ta có:
\(\frac{NP}{AB}=\frac{CN}{CA}=\frac{1}{2}\Rightarrow NP=\frac{AB}{2}; NC=\frac{AC}{2}\)
Mặt khác, \(NP\parallel AB, AB\perp AC\Rightarrow NP\perp AC\)
Do đó:
\(S_{NPC}=\frac{NP.NC}{2}=\frac{\frac{AB}{2}.\frac{AC}{2}}{2}=\frac{AB.AC}{8}\)
\(S_{ABC}=\frac{AB.AC}{2}\)
\(\Rightarrow \frac{S_{NPC}}{S_{ABC}}=\frac{AB.AC}{8}: \frac{AB.AC}{2}=\frac{1}{4}\)
a) C/M DE//BC và ΔADE∼ΔABC
Ta có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (do \(\dfrac{4}{12}=\dfrac{5}{15}=\dfrac{1}{3}\))
⇒ DE//BC (ĐL Ta-lét đảo)
⇒ ΔADE∼ΔABC
b) Tứ giác BDEF hình gì
Ta có DE//BF (do DE//BC:c/ma)
EF//BD (do EF//AB:gt)
Vậy BDEF là hình bình hành
c) C/M ΔCEF∼ΔEAD
Ta có \(\widehat{ADE}=\widehat{ABC}\) (đồng vị do DE//BC)
Lại có \(\widehat{EFC\:}=\widehat{ABC}\) (đồng vị do EF//AB)
⇒\(\widehat{ADE}=\widehat{EFC\:}\)
Và \(\widehat{BAC}=\widehat{FEC}\) (đồng vị do EF//AB)
Vậy ΔCEF∼ΔEAD (g-g)
t ghi nhầm cái dòng thứ 2 từ dưới lên la ME voi HE đều vuong goc voi AB
\(\text{a. Ta có:}\) \(\widehat{ADE}+\widehat{EDH}=90^0\)
\(\widehat{AHE}+\widehat{EHC}=90^0\)
\(\text{Mà}\) \(\widehat{ADE}=\widehat{AHE}\left(=\widehat{DEH}\right)\)\(\text{vì DHEA là hình chữ nhật nên các đường chéo bằng nhau}\)\(\text{và cắt nhau tại trung điểm mỗi đường nên tạo ra các tam giác cân.}\)
\(\Rightarrow\widehat{EDH}=\widehat{EHC}\)
\(\text{Xét 2 tam giác vuông DHE và HEC có: }\)\(\widehat{EDH}=\widehat{EHC}\left(cmt\right)\)
\(\Rightarrow\Delta DHE\infty\Delta HEC\left(gg\right)\)\(\Rightarrow\widehat{DEH}=\widehat{C}\)
\(\text{Mà}\)\(\widehat{DEH}=\widehat{ADE}\left(slt;AD\text{//}HE\right)\)
\(\widehat{ADE}=\widehat{C}\)\(\text{(đpcm)}\)
\(\text{b. Câu này hình như sai đề rồi. Vì từ đỉnh A chỉ kẻ được 1 đường vuông góc với BC thôi. }\)
\(\text{Đề bài chứng minh }\)\(AM⊥BC\)\(\text{nghĩa là phải chứng minh }\)\(M\text{ ≡ H}\)\(\text{thì khi đó }\)\(\Delta ABC\)\(\text{là tam giác cân.}\)
\(\text{(nếu đề là tìm điều kiện của }\)\(\Delta ABC\)\(\text{để}\) \(AM⊥BC\)\(\text{thì được).}\)