\(\Delta ABC\)nhọn với \(\widehat{BAC}=60^0.\)Chứng minh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

A B C H 60

Kẻ BH vuông AC tại H

Ta có:

Tam giác BHC vuông tại H

Áp dụng định lí Pitago: \(BC^2=BH^2+HC^2\)

tam giác ABH vuông tại H nên ta suy ra: \(BH^2=AB^2-AH^2\)

và \(HC^2=\left(AC-AH\right)^2=AC^2-2AC.AH+AH^2\)

Vậy \(BC^2=AB^2-AH^2+AC^2-2AC.AH+AH^2=AB^2+AC^2-2AC.AH\)

Xét tam giác vuông AHB tại H có góc A =60 độ => góc B bằng 30 độ

Áp dụng định lí trong một tam giác vuông cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền

nên ta có: \(AH=\frac{1}{2}AB\)hay 2AH=AB

Thay vào ta suy ra đc điều phải chứng minh

15 tháng 3 2019

A B C H

Kẻ \(CH\perp AB\left(H\in AB\right)\)

Ta có:Xét \(\Delta AHC\) có:\(\widehat{CHA}=90^0,\widehat{HAC}=60^0\Rightarrow\widehat{ACH}=30^0\)

\(\Rightarrow AH=\frac{AC}{2}\)(Theo tính chất cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền)

\(\Rightarrow HB=AB-HA=AB-\frac{AC}{2}\)

Xét \(\Delta HAC\) có:\(AC^2=HA^2+HC^2\Rightarrow HC^2=AC^2-AH^2=AC^2-\left(\frac{AC}{2}\right)^2=\frac{3}{4}AC^2\)(Theo định lý Pythagore)

Xét \(\Delta BCH\) có:\(BC^2=BH^2+CH^2=\left(AB-\frac{AC}{2}\right)^2+\frac{3}{4}AC^2\)

\(=\left(AB-\frac{AC}{2}\right)\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)

\(=AB\left(AB-\frac{AC}{2}\right)-\frac{AC}{2}\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)

\(=AB^2-AB\cdot AC+\frac{AC^2}{4}+\frac{3}{4}AC^2\)

\(=AB^2-AB\cdot AC+AC^2\left(đpcm\right)\)

3 tháng 11 2018

Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC

chúc bạn học tốt

1 tháng 4 2017

Đầu tiên, vẽ tia p/g AD vì góc BAC =2ABC=>Có hai trường hợp sảy ra:1 ^ABD=^BAD=> Tam giác ADB cân tại D=>AD=BD(1)

2 ^ABC=^DAC=>tam giác ABC=tam giác DAC

[AB/AD=BC/AC=>AB.AC=BC.AD (theo(1))

[AC/BC=DC/AC<=>AC^2=BC/DC=BC(BC-BD)=BC^2-AB.AC

=>BC^2=AC^2+AB.AC

9 tháng 6 2020

a. Tam giác ABC cân tại A suy ra AH là đường cao cũng là đường phân giác góc A

\(\Rightarrow\widehat{HAP}=\widehat{HAQ}\)

xét 2 tam giác vuông AHP và AHQ có:

AH chung

góc HAP= góc HAQ ( cm trên)

suy ra 2 tam giác bằng nhau theo TH cạnh huyền- góc nhọn

suy ra AP=AQ nên tam giác APQ cân tại A.

b. Do 2 tam giác APQ và ABC cùng cân tại A nên: \(\widehat{APQ}=\widehat{ABC}\left(=\frac{180^o-A}{2}\right)\)

mà 2 góc này ở vị trí đông vị nên PQ//BC.

c. gọi F là điểm đối xứng của E qua H. => HE=HF

suy ra 2 tam giác BEH và CFH bằng nhau (c.g.c) => BE=CF.

Từ a => HP=HQ

suy ra 2 tam giác HBP và HCQ bằng nhau theo TH (cạnh huyền- cạnh góc vuông).

=> BP=CQ.

xét tam giác CFQ có CF là cạnh huyền nên CF>CQ => BE> BP => đccm

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

9 tháng 11 2019

Hình bạn tự vẽ nha!

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

\(AM\) là đường phân giác (gt).

Theo tính chất trong một tam giác cân, đường phân giác xuất phát từ đỉnh đồng thời là đường trung tuyến ứng với cạnh đáy.

=> \(AM\) là đường trung tuyến của \(\Delta ABC.\)

=> M là trung điểm của \(BC.\)

Mấy câu sau bạn tham khảo tại đây nhé: Câu hỏi của Haruno Sakura.

Chúc bạn học tốt!

10 tháng 11 2019

Bạn giải luôn câu 2,3,4 hộ mình đc ko ?