Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N H I K
Qua B kẻ đường thẳng song song với NI, cắt tia CA tại điểm K.
Xét \(\Delta\)BCK có: N là trung điểm BC, NI // BK; I thuộc CK => I là trung điểm của CK
=> IK=IC => IA + AK = IM + CM. Mà IA=IM nên AK=CM.
Ta có: AK=CM; CM=AB => AK=AB => \(\Delta\)BAK cân tại A => ^ABK=^AKB
Lại có: IH // BK (NI // BK) => ^AKB=^AIH; ^ABK=^AHI (So le trong)
Mà ^ABK=^AKB (cmt) => ^AIH=^AHI => \(\Delta\)HAI cân tại A => AH=AI (đpcm).
a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ
=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC
b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)
Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)
Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)
Gọi E là trung điểm của DC
Khi đó ME , EN lần lượt là đường trung bình của \(\Delta\)BDC, \(\Delta\)DAC
=> ME = \(\frac{1}{2}\)BD, EN = \(\frac{1}{2}\)AC
Mà BD = AC nên ME = NE
=> ^ENM = ^EMN
Mà ^EMN = ^ BNM( EM//BD,slt)
và ^ENM = ^MKC (EN//AC, đồng vị)
=> ^ BNM = ^MKC (đpcm)
a bn nhá
tui nhầm