\(\Delta ABC\)nhọn, các đường cao BD, CE cắt nhau tại H. Vẽ điểm K sao cho AB là đườn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

A B C H K D E F

Do 2 đường cao BD và CE cắt nhau tại H => H là trực tâm của tam giác ABC. Nối A với H sao cho AH cắt BC tại F, ta có AF là đường cao thứ 3 của tam giác ABC => \(AF\perp BC\)

\(\Delta ABF\) vuông tại D \(\Rightarrow\widehat{BAF}+\widehat{ABF}=90^0\) hay \(\widehat{ABF}=\widehat{HAE}\) (1)

\(\Delta BEC\) vuông tại E \(\Rightarrow\widehat{BCE}+\widehat{CBE}=90^0\) hay \(\widehat{ABF}+\widehat{KCB}=90^0\) (2)

Từ (1) và (2) => \(\widehat{HAE}=\widehat{KCB}\) (3)

Ta dễ chứng minh được \(\Delta KAE=\Delta HAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{KAE}=\widehat{HAE}\) hay \(\widehat{KAB}=\widehat{HAE}\) (4)

Từ (3) và (4) \(\Rightarrow\widehat{KAB}=\widehat{KCB}\)

Vậy...

16 tháng 6 2017

sao \(\widehat{ABF}=\widehat{HAE}\) đc bạn

16 tháng 6 2017

AH cắt BC tại M.

Xét \(\Delta ABC\) có 2 đường cao BD và CE cắt nhau tại H

=> H là trực tâm của tam giác ABC

=> \(AH⊥BC\)

=> \(\Delta ABM\)vuông tại M

=> \(\widehat{BAM}+\widehat{ABM}=90^o\)

Mà \(\widehat{KCB}+\widehat{ABM}=90^o\)

Nên \(\widehat{BAM}=\widehat{KCB}\)

Ta có: AK = AH ( A thuộc đường trung trực của đoạn HK)

=> \(\Delta AKH\)cân tại A

Mà AE là đường trung tuyến nên cũng là đường phân giác

=> \(\widehat{KAB}=\widehat{BAM}\)

Mà \(\widehat{KCB}=\widehat{BAM}\)

Nên \(\widehat{KAB}=\widehat{KCB}\)\(\left(đpcm\right)\)

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

19 tháng 8 2016

A B C H K

15 tháng 6 2017

vÌ H LÀ giao điểm củabd và ce => h là trực tâm=>ah vuông góc bc .

     gọi e là giao điểm ah vf bc.   ta có  góc bae +abc=90 

                                                         góc abc+kcb=90

                       => bah=kcb     1

                        ab là đường trung trực hk

                        => ak=ah=> tam giác akh cân => ab đồng thời là đương phân giác => kab=hab                2

                             tuw1 vaf2 => kab=kcb

5 tháng 7 2017

A B C E D I K

Ta có \(\widehat{ABI}\)là góc ngoài của \(\Delta ABD\Rightarrow\widehat{ABI}\)\(=90^0+\widehat{A}\)

         \(\widehat{ACK}\)là góc ngoài của \(\Delta ACE\Rightarrow\widehat{ACK}\)\(=90^0+\widehat{A}\)

\(\Rightarrow\widehat{ABI}\)\(=\widehat{ACK}\)

Xét \(\Delta IBA\)\(\Delta ACK\)có :

           IB = AC (gt)

           \(\widehat{ABI}\)\(=\widehat{ACK}\)( cmt)

           AB = CK ( gt )

\(\Rightarrow\Delta IBA=\Delta ACK\)( c . g . c )

\(\Rightarrow AI=AK\)( 2 cạnh tương ứng )                                                           (1)

 Vì \(\Delta AKE\)vuông tại A \(\Rightarrow\widehat{EAK}\)+\(\widehat{AKE}=90^0\)

               Mà \(\widehat{AKE}=\widehat{IAB}\)( vì \(\Delta IBA=\Delta ACK\left(cmt\right)\)

\(\Rightarrow\widehat{IBA}+\widehat{EAK}=90^0\)                                                                     (2)

 Từ (1) và (2) \(\Rightarrow\)\(\Delta AIK\)vuông cân tại A

16 tháng 1 2020

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).

=> \(\widehat{ABC}=\widehat{ECK}.\)

Hay \(\widehat{DBH}=\widehat{ECK}.\)

Xét 2 \(\Delta\) vuông \(DBH\)\(ECK\) có:

\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)

\(DB=EC\left(gt\right)\)

\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)

=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).

=> \(DH=EK\) (2 cạnh tương ứng).

c) Xét 2 \(\Delta\) vuông \(DHI\)\(EKI\) có:

\(\widehat{DHI}=\widehat{EKI}=90^0\)

\(DH=EK\left(cmt\right)\)

\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)

=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).

=> \(DI=EI\) (2 cạnh tương ứng).

=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 1:

a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng

Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)

Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)

⇒AB=AF(hai cạnh tương ứng)

b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé

Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)

nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)

c)

Xét ΔABC có AB<AC(gt)

mà góc đối diện với cạnh AB là góc C

và góc đối diện với cạnh AC là góc B

nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)

hay \(\widehat{ABC}>\widehat{C}\)(đpcm)

30 tháng 12 2017

Hình bạn tự vẽ nha!

Ta có:

AH_|_BC(AH là đường cao tam giác ABC)

DK_|_BC(DK là đường trung trực của BC)

=>AH//DK(t/c đường thẳng song song)

=>góc AED=góc EDK(so le trong) (1)

=>góc BEH=góc EDK( 2 góc đồng vị) (2)

Từ (1),(2) suy ra:

góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)

Mặt khác:

Xét tam giác BKD và tam giác DKC,có:

DK cạnh chung

BK=KC( K là trung điểm của BC)

góc BKD=góc DKC=1 vuông

=> tam giác BKD=tam giác DKC(c.g.c)

=>BD=DC

=>tam giác BDC cân tại D 

Nên góc BDK=góc CDK(t/c tam giác cân) (3)

Lại do: AH//DK

=>góc CDK=góc DAH( 2 góc đồng vị) (4)

Từ (3),(4)=>góc BDK=góc DAH

Mà góc AED=góc BDK( so le trong)

E là giao điểm của BD và AH(gt)

Nên E nằm giữa BD và AH

=>góc DAE=góc DAH=góc AED

=>tam giác ADE cân tại D ( đpcm)