\(\Delta ABC=\Delta MNP\) biết góc B=60 độ, góc P=30 độ

a) CMR: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

Vì \(\Delta ABC=\Delta MNP\) nên:

N = B = 60o (2 góc tương ứng)

C = P = 30o (2 góc tương ứng)

Nên A = M = 180o - (60o + 30o) = 90o

Vậy \(\Delta ABC,\Delta MNP\) là các tam giác vuông (có góc bằng 90o)

3 tháng 12 2016

Câu 1:

Giải:

Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=-3k,z=5k\)

\(xyz=-30000\)

\(\Rightarrow2k\left(-3\right)k5k=-30000\)

\(\Rightarrow\left(-30\right).k^3=-30000\)

\(\Rightarrow k^3=1000\)

\(\Rightarrow k=10\)

\(\Rightarrow x=20;y=-30;z=50\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(20;-30;50\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)

Tương tự ta có b = c, c = d, d = a

\(\Rightarrow a=b=c=d\)

\(\Rightarrowđpcm\)

3 tháng 12 2016

3, áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)

\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)

\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)

\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)

\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)

từ (1).(2).(3)(4)=>a=b=c=d(dpcm)

 
21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

13 tháng 12 2016

Ta có hình vẽ:

B A C E F K D

a/ Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

hay 900 + góc B + 400 = 1800

=> góc ABC = 500

Ta có: \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{1}{2}\widehat{ABC}\)= \(\frac{1}{2}\)500 = 250

Vậy góc ABD = 250

b/ Xét tam giác ABD và tam giác EBD có:

\(\widehat{ABD}=\widehat{DBE}\) (GT)

BD: chung

AB = EB (GT)

Vậy tam giác ABD = tam giác EBD (c.g.c)

Ta có: tam giác ABD = tam giác EBD

=> \(\widehat{A}=\widehat{E}=90^0\) hay DE \(\perp\)BC (đpcm)

c/ Xét tam giác ABC và tam giác EBF có:

\(\widehat{B}\): góc chung

BA = BE (GT)

góc A = góc E = 900 (đã chứng minh trên)

=> tam giác ABC = tam giác EBF

(trường hợp cạnh huyền góc nhọn)

d/ Xét tam giác BFK và tam giác BCK có:

BK: cạnh chung

\(\widehat{FBK}=\widehat{CBK}\) (GT)

BF = BC (tam giác ABC = tam giác EBF)

=> tam giác BFK = tam giác BCK (c.g.c)

=> \(\widehat{BKF}\)=\(\widehat{BKC}\) (2 góc tương ứng)

Mà góc BKC = 900 (do CK\(\perp\)BD) => góc BKF = 900

Ta có: \(\widehat{FKC}=\widehat{BKF}+\widehat{BKC}=90^0+90^0=180^0\)

hay K,F,C thẳng hàng

15 tháng 12 2016

d) ta có tam giác ABC = tam giác EBF ( theo c)

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( gt )

BK chung

KBK = FBC ( gt)

=> tam giác BKC = tam giác BKF ( c.g.c )

=> BKC = BKF ( 2 góc tương ứng)

=> BKC + BKF = 180°( 2 góc kề bù)

=> BKC = BKF = 180° : 2 = 90° = FKC

vậy 3 điểm F,K,C thẳng hàng

23 tháng 12 2018

A B C D H 1 2 1 2 1

\(a,\widehat{ABC}=60^o\)( theo đề bài )

\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :

\(BD\)là cạnh chung \(\left(1\right)\)

\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)\(\left(2\right)\)

Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)

\(=180^o-30^o-90^o=60^o\)

\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)

\(=180^o-30^o-90^o=60^o\)

\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)

Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)

\(c,\)Không có điểm \(K\)

20 tháng 7 2018

A B C M K E D H

a) \(\Delta\)ABM = \(\Delta\)KCM (c.g.c) => ^ABM = ^KCM (2 góc tương ứng) => AB // CK (2 góc so le trong bằng nhau)

=> ^BAC + ^ACK = 1800 (2 góc trong cùng phía) => ^ACK = 1800 - 1100 = 700

b) \(\Delta\)ABM = \(\Delta\)KCM (cmt) => AB = KC (2 cạnh tương ứng). Mà AB = AD => CK = AD

Ta có: ^BAC + ^BAD + ^CAE + ^DAE = 3600 => ^BAC + ^DAE = 1800

Mà ^BAC + ^ACK = 1800 => ^DAE = ^ACK hay ^DAE = ^KCA

Xét \(\Delta\)CAK và \(\Delta\)AED có: CK=AD; CA=AE; ^KCA = ^DAE => \(\Delta\)CAK = \(\Delta\)AED (đpcm).

c) Tia MA giao DE tại điểm H.

\(\Delta\)CAK = \(\Delta\)AED (cmt) => ^CAK = ^AED (2 góc tương ứng) hay ^CAK = ^AEH

Mà ^CAK + ^HAE = 1800 - ^CAE = 900 => ^AEH + ^HAE = 900 => \(\Delta\)AHE vuông tại H

=> AH vuông góc với DE hay MA vuông góc DE (đpcm).

N
14 tháng 11 2017

chep giai sbt

5 tháng 2 2018

a)   Xét 2 tam giác vuông:   \(\Delta ABD\)và   \(\Delta EBD\)có:

         \(BD:\)cạnh chung

         \(\widehat{ABD}=\widehat{EBD}\)(gt)

suy ra:   \(\Delta ABD=\Delta EBD\)(ch_gn)

b)   \(\Delta ABD=\Delta EBD\)

\(\Rightarrow\)\(AB=EB\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta ABE\)cân tại   \(A\)

mà   \(\widehat{ABE}=60^0\)

\(\Rightarrow\)\(\Delta ABE\)là  tam  giác  đều