Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có
\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)
-> AB = A'B'
AC = A'C'
BC = B'C'
=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)
=> AH = A'H' (2 cạnh tương ứng)
Chúc bạn học tốt
Vì \(\Delta ABC=\Delta A'B'C'\Rightarrow\) AB = A'B' ; BC = B'C'
Ta co: BM=1/2BC ; B'M'=1/2B'C' mà BC = B'C' => BM =B'M'
a, \(\Delta AMB=\Delta A'M'B'\left(ccc\right)\)vì có AB = A'B' ; BM =B'M' ; AM = A'M'
b, => \(\widehat{AMB}=\widehat{A'M'B'}\)
Ta co: \(\widehat{AMB}+\widehat{AMC}=180^O\) ; \(\widehat{A'M'B'}+\widehat{A'M'C'}=180^o\)
mà \(\widehat{AMB}=\widehat{A'M'B'}\) => \(\widehat{AMC}=\widehat{A'M'C'}\)
A B C M A' B' C' M'
a/ Ta có: \(\Delta ABC=\Delta A'B'C'\)
\(\Rightarrow AB=A'B'\left(1\right)\)
\(\Rightarrow BC=B'C'\)
\(\Rightarrow BM=B'M'\left(2\right)\)
Xét \(\Delta AMB\)và \(\Delta A'M'B'\) có
\(AB=A'B'\)(theo )
\(BM=B'M'\)(theo 2)
\(AM=A'M'\)(gt)
\(\Rightarrow\Delta AMB=\Delta A'M'B'\)
b/ Ta có: \(\Delta AMB=\Delta A'M'B'\)
\(\Rightarrow\widehat{AMB}=\widehat{A'M'B'}\)
Mà \(\hept{\begin{cases}\widehat{AMC}=180^o-\widehat{AMB}\\\widehat{A'M'C'}=180^o-\widehat{A'M'B'}\end{cases}}\)
\(\Rightarrow\widehat{AMC}=\widehat{A'M'C'}\)
a.Xét tam giác AMH và tam giác NMB có
MA = MN [ gt ]
góc AMH = góc NMB [ đối đỉnh ]
HM = BM [ gt ]
Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]
\(\Rightarrow\)góc AHM = góc NBM
mà bài cho góc AHM = 90độ
\(\Rightarrow\)góc NBM = 90độ
Vậy NB vuông góc với BC
b.Theo câu a ; tam giác AMH = tam giác NMB
\(\Rightarrow\)AH = NB [ cạnh tương ứng ]
Mặt khác ; Xét tam giác AHB vuông tại H có
AB lớn hơn AH
\(\Rightarrow\)AB lớn hơn NB
Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(BEA\) và \(BEM\) có:
\(BA=BM\left(gt\right)\)
\(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
Cạnh BE chung
=> \(\Delta BEA=\Delta BEM\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta BEA=\Delta BEM.\)
=> \(EA=EM\) (2 cạnh tương ứng).
=> E thuộc đường trung trực của \(AM\) (1).
Vì \(BA=BM\left(gt\right)\)
=> B thuộc đường trung trực của \(AM\) (2).
Từ (1) và (2) => \(BE\) là đường trung trực của \(AM.\)
Ta có: \(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
=> \(\widehat{ABN}=\widehat{MBN}.\)
Xét 2 \(\Delta\) \(ABN\) và \(MBN\) có:
\(AB=MB\left(gt\right)\)
\(\widehat{ABN}=\widehat{MBN}\left(cmt\right)\)
Cạnh BN chung
=> \(\Delta ABN=\Delta MBN\left(c-g-c\right)\)
=> \(AN=MN\) (2 cạnh tương ứng).
=> N là trung điểm của \(AM.\)
Chúc bạn học tốt!
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau