\(\Delta ABC\)có \(\widehat{B}=60^o\),
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

A B C x H I

Trên BC lấy điểm H sao cho ^BAH=600

Xét \(\Delta\)ABH: ^ABH=^BAH=600 => \(\Delta\)ABH là tam giác đều

=> AB=AH=BH (1)

Ta có: ^ABI=^ABC-^CBx=600-150=450.

Xét \(\Delta\)BAI: ^BI=900; ^ABI=450 => \(\Delta\)BAI vuông cân tại A => AB=AI (2)

Từ (1);(2) => AH=AI

Tính được ^BAC=1800-600-450=750 => ^HAC=750-^BAH=750-600=150 => ^HAC=150 (3)

Lại có: ^IAC=^BAH-^BAC=900-750=150 (4)

Từ (3) và (4) => ^HAC=^IAC

Xét \(\Delta\)AHC và  \(\Delta\)AIC: AH=AI; ^HAC=^IAC; AC chung

=> \(\Delta\)AHC=\(\Delta\)AIC (c.g.c) => ^ACH=^ACI.

Vì ^ACH=450 => ^ACI=450 => ^ACH+^ACI=^ICH=900 hay ^ICB=900

Vậy ^ICB=900.

12 tháng 3 2018

Chỗ ^IAC=^BAH-^BAC bạn sửa thành ^IAC=^BAI-^BAC nhé. Mình gõ nhầm đấy.

27 tháng 1 2018

nối M với h, ta có: 
MH = AC/2 = MC ( trung tuyến = 1/2 cạnh huyền của tam giác vuông AHC) 
=> MHC^ = MCH^ = 2.KCH^ ( vì CK là phân giác của ACB^) 
gt: KB = KC => KCH^ = KBH^ 
=> MHC^ = 2.KBH^ = KBH^ + KBH^ (1) 
mắt khác: 
MHC^ = KBH^ + KMH^ (2) ( góc ngoài và trong của tam giác BMH) 
(1) và (2) => KBH^ = KMH^ => BHM cân tại H => HB = HM (1) 
tổng góc trong của tam giác BMH là: 
KBH^ + BHA^ + AHM^ + KMH^ = 180* 
=> 2.KBH^ + 90* + AHM^ = 180* 
=> 2.KBH^ + AHM^ = 90* (2) 
tam giác AHC vuông => MAH^ + MCH^ = 90* 
=> MAH^ + 2.KCH^ = 90* 
=> MAH^ + 2.KBH^ = 90* (3) ( vì KCH^ = KBH^) 
(2) và (3) => AHM^ = MAH^ => HA = HM 
mặt khác: HM = AC/2 = AM 
=> HA = HM = AM => AHM là tam giác đều => HA = HM (4) 
(1) và (4) => HA = HB 
=> AHM là tam giác đều => MAH^ = 60* => ACB^ = 30* 
=> ABC^ = 180* - BAC^ - ACB^ = 180* - 105* - 30* = 45* 
(hoặc ABC^ = ABH^ = 45* => ACB^ = 30*)

27 tháng 1 2018
jgfjjy
22 tháng 3 2020

A B C D x

a) \(\Delta ABC\)có: \(\widehat{ACB}=180^o-75^o-60^o=45^o\)

\(\Delta\)DAB vuông tại A có: \(\widehat{DBA}\)=60o-15o=45o

=> \(\Delta\)DAB cân tại A => \(\widehat{ADB}\)=45o

Tứ giác ABCD có: \(\widehat{ADB}=\widehat{ACB}\left(=45^o\right)\)

=> Tứ giác ABCD nội tiếp đường tròn

=> \(\widehat{DCB}+\widehat{DAB}=180^o\)

=> \(\widehat{DCB}=90^o\)

=> DC _|_ BC(đpcm)

b) \(\Delta\)ABD vuông cân tại A nên AD=AB=1

=> BD2=AB2+AD2=12+12=2

Xét \(\Delta\)DCB vuông tại C có:

CD2+BC2=BD2=2

Vậy BC2+CD2=2

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

1 tháng 12 2018

\(\Delta ABC=180^o;A+B+C=180^o;B=70^o\Rightarrow A+C=110^o;A=180^o-3C;\)

\(A=180^o-B-C=180^o-3C\Rightarrow B=2C\Rightarrow C=35^o\Rightarrow A=75^o\)

b, chưa lm đc

28 tháng 6 2020

Bài làm

a) Xét tam giác ABM có:

MK là đường trung trực

=> MB = MA ( tính chất đường trung trực )

=> Tam giác ABM cân tại M

b) Vì MK vuông góc AB 

CB vuông góc AB 

=> MK // CB

=> ^AMK = ^MCB ( đồng vị ).         (1)

Vì tam giác ABM cân tại M

Mà MK là trung trực

=> MK là phân giác

=> ^AMK = ^BMK.         (2)

Từ (1) và (2) => ^BMK = ^MCB.         (3)

Vì tam giác BMK vuông tại K

=> ^BMK + ^MBK = 90°

Vì tam giác ABC vuông tại A

=> ^MBK + ^MBC = 90°

=> ^BMK = ^MBC.       (4)

Từ (3) và (4) => ^MBC = ^MCB 

28 tháng 6 2020

bài làm

c) Xét tam giác BIA có:

AH vuông góc với BI

IK vuông góc với AB

Mà AH và IK cắt nhau ở M

=> M là trực tâm

=> BM vuông góc với IA ( đpcm )

d) Xét tam giác HMB và tam giác EMA có:

^MHB = ^MEA = 90°

Cạnh huyền: BM = AM ( cmt )

Góc nhọn: ^HMB = ^EMA ( đối )

=> Tam giác HMB = tam giác EMA ( ch-gn )

=> HM = ME

=> Tam giác MHE cân tại M

=> ^MHE = ^MEH

Xét tam giác MHE có:

^HME + ^MHE + ^MEH = 180°

=> ^HME + 2^MHE = 180°

=> 2^MHE = 180° - ^HME.    (5)

Xét tam giác ABM cân tại M có:

^BMA + ^MBA + ^MAB = 180°

=> ^BMA + 2^MAB = 180°

=> 2^MAB = 180° - ^BMA.       (6)

Mà ^HME = ^BMA ( đối ).        (7)

Từ (5) và (6) và (7) => 2^MHE = 2^MAB

                                  => ^MHE = ^MAB

Mà hai góc này ở vị trí so le le trong

=> HE // AB