\(\Delta ABC\)có \(\widehat{B}=30^o;\widehat{C}=105^o\)và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

lkjytreedfyhgfdfgff

24 tháng 2 2022

lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345

20 tháng 11 2022

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có sin ACB=AB/BC=1/2

nen góc ACB=30 độ

=>góc ABC=60 độ

b: Ta có: ΔOAD cân tại O

mà OH là đường cao

nên OH là trung trực của AD và OH là phân giác của góc AOD

=>BC là trung trực của AD 

Xét ΔCAD có

CH vừa là đường cao, vừa là trungtuyến

nên ΔCAD cân tại C

=>góc ACD=2*góc ACB=60 độ

=>ΔCAD đều

c: Xét ΔEAO và ΔEDO có

OA=OD

góc AOE=góc DOE

OE chung

Do đó; ΔEAO=ΔEDO

=>góc EAO=90 độ

=>EA là tiếp tuyến của (O)

22 tháng 8 2020

Goi D la trung diem AB , E la trung diem AC

Khi DE la duong trung bnh tam giac ABC 

\(\Rightarrow\hept{\begin{cases}DE//BC\\DE=\frac{1}{2}BC\end{cases}\Rightarrow\hept{\begin{cases}DE\perp AH\\DE=AH\end{cases}}}\) (1)

Ma DE cung di qua trung die AH ( tinh chat duong trung binh) (2)

Tu (1) va (2) suy ra ADHE la hinh vuong

\(\Rightarrow\widehat{A}=90^0\Rightarrow\widehat{C}=90^0-75^0=15^0\)

22 tháng 8 2020

@Upin & Ipin :

Ta có DE = AH, DE đi qua trung điểm AH và DE vuông góc AH nhưng AH không đi qua trung điểm DE ( chưa c/m ) thì ADHE chưa thể là hình vuông.

Mà cứ cho như là hình vuông thì tam giác ABC vuông tại A, suy ra trung tuyến AI bằng nửa BC hay I trùng H ( mâu thuẫn ).

Tại mình cũng từng nghĩ như này nhưng sai nên mới lên đây hỏi, ai dè...

a) Xét ΔANC vuông tại N có

\(\widehat{NAC}+\widehat{ACN}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{ACN}=90^0-\widehat{NAC}=90^0-60^0=30^0\)

Xét ΔANC vuông tại N có \(\widehat{ACN}=30^0\)(cmt)

nên \(AN=\frac{AC}{2}\)(Trong một tam giác vuông, cạnh đối với góc 300 thì bằng nửa cạnh huyền)

hay \(AN=\frac{8}{2}=4cm\)

Áp dụng định lí Pytago vào ΔANC vuông tại N, ta được:

\(AC^2=AN^2+NC^2\)

\(\Leftrightarrow NC^2=AC^2-AN^2=8^2-4^2=64-16=48\)

hay \(NC=4\sqrt{3}cm\)

Vậy: AN=4cm; \(NC=4\sqrt{3}cm\)

Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM∼ΔACN(g-g)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng bằng nhau)

\(\widehat{ACN}=30^0\)(cmt)

nên \(\widehat{ABM}=30^0\)

Vậy: \(\widehat{ABM}=30^0\)

b) Xét ΔABC có:

BM là đường cao ứng với cạnh AC(gt)

CN là đường cao ứng với cạnh AB(gt)

BM\(\cap\)CN={H}

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

⇔AH⊥BC

hay AK⊥BC

Xét ΔCBM vuông tại M và ΔCAK vuông tại K có

\(\widehat{BCM}\) chung

Do đó: ΔCBM∼ΔCAK(g-g)

\(\Rightarrow\widehat{CBM}=\widehat{CAK}\)(hai góc tương ứng)(ddpcm)

c) Ta có: \(AN=\frac{AC}{2}\)(cmt)

nên \(\frac{AN}{AC}=\frac{1}{2}\)

hay \(\frac{AC}{AN}=2\)

Ta có: ΔABM∼ΔACN(cmt)

\(\frac{AB}{AC}=\frac{AM}{AN}\)

hay \(\frac{AB}{AM}=\frac{AC}{AN}\)

Xét ΔABC và ΔAMN có

\(\frac{AB}{AM}=\frac{AC}{AN}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔABC∼ΔAMN(c-g-c)

\(\frac{BC}{MN}=\frac{AC}{AN}\)(hai cặp cạnh tương ứng tỉ lệ)

\(\frac{AC}{AN}=2\)(cmt)

nên \(\frac{BC}{MN}=2\)

hay \(MN=\frac{BC}{2}\)(1)

Xét ΔNBC vuông tại N có NI là đường trung tuyến ứng với cạnh huyền BC(I là trung điểm của BC)

nên \(NI=\frac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Xét ΔMBC vuông tại M có MI là đường trung tuyến ứng với cạnh huyền BC(I là trung điểm của BC)

nên \(MI=\frac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(3)

Từ (1), (2) và (3) suy ra IN=IM=NM

Xét ΔINM có IN=IM=NM(cmt)

nên ΔINM đều(định nghĩa tam giác đều)(đpcm)