Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A B C E M F K H
Giải:
Kẻ \(EF⊥AH,DK⊥AH\)
Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\left(\widehat{AHB}=90^o\right)\)
\(\widehat{BAH}+\widehat{DAK}=90^o\left(\widehat{BAD}=90^o\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DAK}\)
Xét \(\Delta ABH,\Delta DAK\) có:
\(\widehat{ABH}=\widehat{DAK}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{DKA}=90^o\)
AB = AD ( gt )
\(\Rightarrow\Delta ABH=\Delta DAK\) ( c.huyền - g.nhọn )
\(\Rightarrow DK=AH\) ( cạnh t/ứng )
Tương tự \(\Rightarrow EF=AH\)
Lại có: \(\widehat{DMK}+\widehat{MDK}=90^o\left(\widehat{MKD}=90^o\right)\)
\(\widehat{EMF}+\widehat{MEF}=90^o\left(\widehat{EKM}=90^o\right)\)
Mà \(\widehat{DMK}=\widehat{EMF}\) ( đối đỉnh )
\(\Rightarrow\widehat{MDK}=\widehat{MEF}\)
Xét \(\Delta DKM,\Delta EFM\) có:
DK = EF ( = AH )
\(\widehat{MDK}=\widehat{MEF}\left(cmt\right)\)
\(\widehat{MKD}=\widehat{MFE}=90^o\)
\(\Rightarrow\Delta DKM=\Delta EFM\left(g-c-g\right)\)
\(\Rightarrow MD=ME\) ( cạnh t/ứng )
\(\Rightarrowđpcm\)
Giải:
Kẻ EF⊥AH,DK⊥AH
Ta có: ^BAH+^ABH=90o(^AHB=90o)
^BAH+^DAK=90o(^BAD=90o)
⇒^ABH=^DAK
Xét ΔABH,ΔDAK có:
^ABH=^DAK(cmt)
^AHB=^DKA=90o
AB = AD ( gt )
⇒ΔABH=ΔDAK ( c.huyền - g.nhọn )
⇒DK=AH ( cạnh t/ứng )
Tương tự ⇒EF=AH
Lại có: ^DMK+^MDK=90o(^MKD=90o)
^EMF+^MEF=90o(^EKM=90o)
Mà ^DMK=^EMF ( đối đỉnh )
⇒^MDK=^MEF
Xét ΔDKM,ΔEFM có:
DK = EF ( = AH )
^MDK=^MEF(cmt)
^MKD=^MFE=90o
⇒ΔDKM=ΔEFM(g−c−g)
⇒MD=ME ( cạnh t/ứng )
A/ Theo giả thiết ta có:DA=BA;AE=AC\(\Rightarrow\) DC=BE
Vì tam giác BDA là tam giác vuông cân\(\Rightarrow\)góc A=90 độ\(\Rightarrow\) DC vuông góc vs BE
B/ Áp dụng định lý Pi-ta-go cho tam giác BAD vuông tại A:BD2=BA2+AD2
ACE vuông tại A:CE2=AC2+AE2
ADE vuông tại A:DE2=DA2+AE2
BAC vuông tại A:BC2=AB2+AC2
Từ trên suy ra:BD2+CE2=BC2+DE2
C/Xét tam giác BAC và DAE:DA=BA
BA=AE
GÓC BAC=GÓC DAE=90
\(\Rightarrow\) Tam giác BAC=DAE(c-g-c)
\(\rightarrow\) BC=DE(2 cạnh t/ứ)
\(\rightarrow\) góc CBA=góc AED(t/ứ)
mà 2 góc nàm vị trí so le trong\(\Rightarrow\)BC song song DE
\(\rightarrow\) góc BCE+góc CED=180 ĐỘ(2 góc phía trong cùng phía)
mà góc DCE=góc BEC(TAM GIÁC cae VUÔNG CÂN)
\(\Rightarrow\) Góc BCD=góc BED
MÀ góc BCD=CDE(so le trong)
\(\Rightarrow\) góc ADE=góc AED\(\Rightarrow\) TAM GIÁC ADE vuông cân tai E
mà ta có AI(IK cắt DE ở I)LÀ đường trung trực của tam giác
\(\rightarrow\) AI cx là đg trung tuyến của ADE
\(\Rightarrow\) I là trung điểm của DE
MÀ ta lại có BC=DE(cm phần trên rồi)
\(\Rightarrow\) k là trung điểm của BC
(ko bít vẽ hình)
Gọi giao điểm của AB và DC là I, giao điểm của AE và DC là K.
Ta có: ^ABC+^ABD=^ABC+900=^CBD
^ABC+^CBE=^ABC+900=^EBA
=> ^CBD=^EBA => \(\Delta\)ABE=\(\Delta\)DBC (c.g.c)
=> ^BAE=^BDC (2 góc tương ứng) hay ^IAK=^BDI
Xét \(\Delta\)BDI và \(\Delta\)IAK: ^BDI=^IAK; ^BID=^KIA (Đối đỉnh) => ^DBI=^IKA
Mà ^DBI=900 => ^IKA=900 => \(AE⊥DC\)(đpcm)
Cậu tự vẽ hình nha !
Ta có :
\(\widehat{EBA}=90^0+\widehat{CBA}=\widehat{DBC}\)
Xét tam giác ABE và tam giác DBC có :
BD = BA
BE = BC => tam giác ABE = tam giác DBC
\(\widehat{EBA}=\widehat{DBC}\)
Từ đây , ta suy ra
\(\widehat{BDC}=\widehat{BAE}\)
Gọi giao điểm của BA và CD là X
giao điểm của AE và CD là Y
Áp dụng tổng 3 góc trong một tam giác , ta có :
\(\widehat{DXB}+\widehat{BDX}+\widehat{XBD}=180^0\)(tam giác BDX)
\(\widehat{XAY}+\widehat{YXA}+\widehat{AYX}=180^0\) (tam giác YXA)
Mặt khác , góc DXB = góc YXA
góc BDX = góc YAX
=> DBX = YXA = 900
=> DC vuông góc với AE
C ghi toàn bộ đề giùm e đi đề thiếu sao làm đuợc ?
K thiếu đâu cưng ^^