Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
Do đo: ΔHAC đồng dạng với ΔABC
b: BC=20cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: CD=80/7(cm)
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
A C D E
Xét \(\Delta ABC\) Và \(\Delta DEC\) có :
\(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )
\(\widehat{C}\) là góc chung
\(\Rightarrow\)\(\Delta ABC\) ~ \(\Delta DEC\) ( g-g )
Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :
\(BC^2\)= \(AB^2\)\(+\)\(AC^2\)
\(BC^2\)= 32 + 52
\(BC^2\)= 9 + 25
\(BC^2\)= 34
\(BC=\sqrt{34}\)
Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)
\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)
\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)
Bạn tự vẽ hình nhaa =)) <3
a) Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{ABC}chung\)
\(\widehat{BHA}=\widehat{BAC}\)( vì cùng = 90 độ)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta ABC\)(g.g)
b) Vì \(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow AB^2+AC^2=BC^2\)( định lý Py-ta-go)
thay số vào tính được AB= 20 (cm) nhé
Vì \(\Delta HBA\)đồng đạng với \(\Delta ABC\)(cmt)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( định nghĩ tam giác đd)
thay số vào rồi tính được AH= 12(cm) nè
c) Xét \(\Delta HCO\)và \(\Delta ACI\)có
\(\widehat{HCO}=\widehat{ACI}\)( vì CI là tia phân giác )
\(\widehat{OHC}=\widehat{IAC}\)( cùng = 90 độ)
\(\Rightarrow\Delta HCO\)đòng dạng với \(\Delta ACI\)(g.g)
\(\Rightarrow\frac{HC}{AC}=\frac{HO}{AI}\)( đn tam giác đd)
\(\Rightarrow HC.AI=AC.HO\)
d) Mình chưa ngĩ ra nhwung mình nghĩ sẽ dựa vào Sabc và tỉ số đồng dạng đó ạ :(((
hình bạn tự vẽ nhá
a) Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
b) ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)
=> AH = 9,6 cm
Ta có : AD là phân giác của A^
=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)
=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)
=> 16BD = 240 - 12BD
=> 28BD = 240
=> BD = 8,5 cm
hình bạn tự vẽ ak nghen!!!
a)
Xét tam giác ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
a) Xét \(\Delta HAC\)và \(\Delta ABC\)có:
\(\widehat{AHC}=\widehat{BAC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta HAC~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\) \(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
\(\Delta ABC\) có \(AD\)là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)
c) Xét \(\Delta CED\)và \(\Delta CAB\)có:
\(\widehat{CED}=\widehat{CAB}=90^0\)
\(\widehat{ECD}\) chung
suy ra: \(\Delta CED~\Delta CAB\)
\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)
\(\Rightarrow\)\(CE.AB=AC.ED\) (đpcm)
thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs