\(\Delta ABC\)có \(\widehat{A}\)=90 độ. Gọi M là trung đi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Tự vẽ hình và ghi GT, KL

CM :

a) Xét \(\Delta ABM\)và \(\Delta CNM\)

Có AM = CM (gt)

    \(\widehat{AMC}=\widehat{CMN}\)(đối đỉnh )

    MB = NM (gt)

=> \(\Delta ABM=\Delta CNM\)(c.g.c)

=> góc NCM = góc MAB ( hai cạnh tương ứng )

Mà góc MAB = 900 (gt) => góc NCM = 900

=> CN \(\perp\)AC

và CN = AB (hai cạnh tương ứng)

b) Xét tam giác AMN và tam giác CMB

có MN = MB (gt)

  góc NMA = góc CMB (đối đỉnh)

  CM = AM (gt)

=> tam giác AMN = tam giác CMB (c.g.c)

=> AN = BC ( hai cạnh tương ứng)

=> góc NAM = góc BCM ( hai góc tương ứng)

Mà góc NAM và góc BCM ở vị trí so le trong

=> AN // BC

30 tháng 12 2018

CM :

a) Xét ΔABMvà ΔCNM

Có AM = CM (gt)

    ^AMC=^CMN(đối đỉnh )

    MB = NM (gt)

=> ΔABM=ΔCNM(c.g.c)

=> góc NCM = góc MAB ( hai cạnh tương ứng )

Mà góc MAB = 900 (gt) => góc NCM = 900

=> CN AC

và CN = AB (hai cạnh tương ứng)

b) Xét tam giác AMN và tam giác CMB

có MN = MB (gt)

  góc NMA = góc CMB (đối đỉnh)

  CM = AM (gt)

=> tam giác AMN = tam giác CMB (c.g.c)

=> AN = BC ( hai cạnh tương ứng)

=> góc NAM = góc BCM ( hai góc tương ứng)

Mà góc NAM và góc BCM ở vị trí so le trong

=> AN // BC

21 tháng 8 2018

a)    \(\Delta\)ABM và \(\Delta\)NCM, có:

              AM=MC ( vì M là trung điểm )

              \(\widehat{AMB}\)=\(\widehat{CMN}\)( hai góc đối đỉnh )

              BM=MN ( vì M là trung điểm )

\(\Rightarrow\)\(\Delta\)AMB =\(\Delta\)NCM ( c.g.c )

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{NCM}\)= 900 ( hai góc tương ứng ) \(\Rightarrow\)CN\(\perp\)AC

\(\Rightarrow\)CN=AB ( hai cạnh tương ứng )

24 tháng 12 2017

a, \(\Delta ABM=\Delta CKM\)

Vì : MA=MC (GT)

MB=MK (GT)

^BMA= ^CMK

b, Ta có ^A= 90 độ

mà ^A= ^KCM = 90 độ ( \(\Delta ABM=\Delta CKM\))

=>KC⊥AC

c,

Ta có: ^A= ^KCM

Mà còn ở vị trí so le trong

==> AK//BC

29 tháng 11 2019

Mong các bạn giải cho mik trong thời gian sớm nhất.

27 tháng 12 2017

a, Xét ΔAIB và ΔAIC

có: AB=AC

IB=IC

AI là cạnh chung

=> ΔAIB và ΔAIC

=> ^BÃI=^CAI

=> AI là tia phân giác ^BAC

b, Xét ΔABM và ΔANC

có: MB=NC

AB=AC

^MBA=^NCA( ^ABI=^ACI)

=> ΔABM = ΔANC

=> AM=AN

c, chưa đủ ý

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
24 tháng 1 2019

a)          Xét tam giác AIB và CID ta có

          IA=IC(gt)

           AIB=DIC(đói đỉnh)

            IB=ID

                =>tam giác AIB = tam gics CID

b)           đề sai nha M là trung điểm của AB mới đúng nha bạn

Xét tam giác AIM và CIN ta có

IA=IC(gt)

MAC=DCA(vì tam giác AIB=CID)

AM=AB chia 2

CN=CDchia 2

AB=CD(vì tg AIB=tg CID)

=>AM=CN

=>tg AIM=TG CIN

=> IM=IN(tương ứng)         (1)

=> GÓC AIM = CIN 

mà A,I,C thảng hàng 

=> M,I,N thẳng hàng             (2)

kết hợp (1) và (2) => I là trung điểm của MN

c) trong tam giác ABC có A > 90độ 

=> AIB < 90 độ

mà AIB+BIC=180 độ( 2 góc kề bù)

=> BIC > 90 độ

=> AIC<BIC (đpcm)

d)ta có : tam giac AIB = CID 

=> ACD=A

AC vuông góc vs CD => ACD = 90 độ

=> A=90độ 

=> tam giác ABC là Tam Giác Vuông Tại A

vậy để AC vuông góc vs CD 

Thì tam Giác ABC phải vuông tại A

ok nha em