Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ C kẻ đường cao xuống AB, giao với AB tại H
Trong tam giác vuông HBC có:
BC2 = CH2 + BH2 ( 1 )
Trong tam giác vuông ACH, ta có:
CH2 = AC2 - AH2 ( 2 )
Thay BH = / AB - AH / ( Xét cả hai trường hợp góc B nhỏ hơn và lớn hơn 90o ), ta được:
BH2 = / AB - AH /2 = AB2 + AH2 - 2AB . AH ( 3 )
Thay ( 2 ) và ( 3 ) vào ( 1 ) ta được:
BC2 = ( AC2 - AH2 ) + ( AB2 + AH2 -2.AB.AH )
= AB2 + AC2 -2.AB.AH
= AB2 + AC2 - 2.AB.AC.cosA
Hay: BC = b2 +c2 - 2bc. cos \(\alpha\).
A C B b a c H
Tam giác ABC vuông tại A => tan B = tan a => \(\frac{AC}{AB}=\frac{5}{12}\)
Mà AB= 6cm => AB= (AC.12)/5= (6.5)/12 = 2,5 cm
Áp dụng định lý py ta go ta có : BC^2 = AB^2 + AC^2 = 6^2 + 2,5 ^2 = \(\frac{169}{4}\) => BC=\(\sqrt{\frac{169}{4}}\)= \(\frac{13}{2}\)= 6,5 cm
a) \(\left(sinA+cosA\right)^2=sin^2A+cos^2A+2sinAcosA=1+2sinAcosA\)
vì tam giác \(ABC\)nhọn nên \(0^o< \widehat{A}< 90^o\)nên \(sinA>0,cosA>0\Rightarrow2sinAcosA>0\)
nên \(\left(sinA+cosA\right)^2>1\Leftrightarrow sinA+cosA>1\)do \(sinA>0,cosA>0\).
b) Kẻ đường cao \(AH\).
Đặt \(HB=x\Rightarrow HC=a-x\).
Xét tam giác \(AHB\)vuông tại \(H\): \(AH=HB.tan\widehat{ABH}=xtan45^o=x\)
Xét tam giác \(AHC\)vuông tại \(H\): \(AH=HCtan\widehat{ACH}=\left(a-x\right)tan60^o=\sqrt{3}\left(a-x\right)\)
Ta có: \(x=\sqrt{3}\left(a-x\right)\Leftrightarrow x=\frac{\sqrt{3}}{1+\sqrt{3}}a\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{3}}{1+\sqrt{3}}a.a=\frac{3-\sqrt{3}}{4}a^2\).