\(\Delta ABC\)có \(AB< AC\). Trên cạnh 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

A B C D E 1 2

vì AC>AB mà AB=AD nên AD<AC mặt khác D thuộc AC nên D nằm giữa A và C

TA có: E thuộc đường trung trực của DB nên E cách đều D và B suy ra DE=DB

E thuộc đường trung trực của AC nên E cách đều A và C suy ra EA=EC

Xét \(\Delta AEB\)và \(\Delta CED\)

\(\hept{\begin{cases}AB=DC\left(gt\right)\\BE=ED\left(cmt\right)\\AE=EC\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta AEB=\Delta CED\left(c.c.c\right)\)

b, Do \(\Delta AEB=\Delta CED\left(c.c.c\right)\left(cmt\right)\)

Nên \(\Rightarrow\widehat{A_1}=\widehat{DCE}\)(2 góc tương ứng bằng nhau) (1)

Mà AE=EC suy ra tam giác AEC cân tại E

\(\Rightarrow\widehat{A_2}=\widehat{DCE}\)(2)

Từ 1 và 2 suy ra \(\widehat{A_1}=\widehat{A_2}\left(=\widehat{DCE}\right)\)

suy ra AE là phân giác của góc trong tại đỉnh A của tam giác ABC

11 tháng 2 2019

2 đường kẻ hồng hồng là đường ttrung trực nha!

còn màu xanh lam là mk nối thêm cho ra tam giác 

14 tháng 4 2018

Vẽ hình đi bạn !!! 

9 tháng 2 2019

l don't know

vv:))

hok tốt

tra trên mạng ik

phương anh ###

9 tháng 2 2019

Bài 1 : Hình ngại lắm bạn à :) Bạn cố nghĩ nha :v

Bài 2 :

a) \(\left|\frac{2}{3}x+1\right|+\frac{1}{4}=2\)

\(\Leftrightarrow\left|\frac{2}{3}x+1\right|=\frac{7}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x+1=\frac{7}{4}\\\frac{2}{3}x+1=-\frac{7}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x=\frac{3}{4}\\\frac{2}{3}x=-\frac{11}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{8}\\x=-\frac{33}{8}\end{cases}}\)

Vậy....

b) \(A=1+5+5^2+...+5^{2011}\)

\(5A=5+5^2+5^3+...+5^{2012}\)

\(5A-A=\left(5+5^2+...+5^{2012}\right)-\left(1+5+...+5^{2011}\right)\)

\(4A=5^{2012}-1\)

\(A=\frac{5^{2012}-1}{4}\)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

25 tháng 4 2017

A B C D E G H

a) \(\Delta ABC\) vuông tại A

\(\widehat{ABC+\widehat{ACB=90^o}}\)

\(55^o+\widehat{ACB=90^o}\)

\(\Rightarrow\widehat{ACB=35^o}\)

Nên \(\widehat{ACB< \widehat{ABC}}\)

\(\Rightarrow AB< AC\) (quan hệ giữa góc và cạnh đối diện trong tam giác).

b) Xét hai tam giác vuông ABD và AED có:

AB = AE (gt)

AD: cạnh chung

Vậy: \(\Delta ABD=\Delta AED\left(hcgv\right)\)

c) Hai trung tuyến BD và AF cắt nhau tại G nên G là trọng tâm của

\(\Delta ABC\)

Ta có: DG = \(\dfrac{1}{3}BD\)

Hai trung tuyến ED và AK cắt nhau tại H nên H là trọng tâm của

\(\Delta AEC\)

Ta có: DH = \(\dfrac{1}{3}ED\)

Mà BD = ED (\(\Delta ABD=\Delta AED\))

Nên DG = DH

Do đó: \(\Delta GDH\) cân tại D (đpcm).