Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Hình ngại lắm bạn à :) Bạn cố nghĩ nha :v
Bài 2 :
a) \(\left|\frac{2}{3}x+1\right|+\frac{1}{4}=2\)
\(\Leftrightarrow\left|\frac{2}{3}x+1\right|=\frac{7}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x+1=\frac{7}{4}\\\frac{2}{3}x+1=-\frac{7}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x=\frac{3}{4}\\\frac{2}{3}x=-\frac{11}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{8}\\x=-\frac{33}{8}\end{cases}}\)
Vậy....
b) \(A=1+5+5^2+...+5^{2011}\)
\(5A=5+5^2+5^3+...+5^{2012}\)
\(5A-A=\left(5+5^2+...+5^{2012}\right)-\left(1+5+...+5^{2011}\right)\)
\(4A=5^{2012}-1\)
\(A=\frac{5^{2012}-1}{4}\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C D E F
GT | △ABC: AB < AC. BAD = DAC = BAC/2 (D BC) E AC : AE = AB F AB : AF = AC |
KL | a, △ABD = △AED b, AD ⊥ FC c, △BDF = △EDC ; BF = EC d, F, D, E thẳng hàng |
Bài làm:
a, Xét △ABD và △AED
Có: AB = AE (gt)
BAD = DAE (gt)
AD là cạnh chung
=> △ABD = △AED (c.g.c)
b, Vì △ABD = △AED (cmt)
=> BD = ED (2 cạnh tương ứng)
=> D thuộc đường trung trực của BE (1)
Vì AB = AE (gt) => A thuộc đường trung trực của BE (2)
Từ (1) và (2) => AD là đường trung trực của BE
=> AD ⊥ FC
c, Vì △ABD = △AED (cmt)
=> ABD = AED (2 góc tương ứng)
Ta có: ABD + DBF = 180o (2 góc kề bù)
AED + DEC = 180o (2 góc kề bù)
Mà ABD = AED (cmt)
=> DBF = DEC
Lại có: AB + BF = AF
AE + EC = AC
Mà AB = AE (gt) ; AF = AC (gt)
=> BF = EC
Xét △BDF và △EDC
Có: BD = ED (cmt)
DBF = DEC (cmt)
BF = EC (cmt)
=> △BDF = △EDC (c.g.c)
d, Vì △BDF = △EDC (cmt)
=> BDF = EDC (2 góc tương ứng)
Ta có: BDE + EDC = 180o (2 góc kề bù)
=> BDE + BDF = 180o
=> FDE = 180o
=> 3 điểm F, D, E thẳng hàng
A B C D E G H
a) \(\Delta ABC\) vuông tại A
\(\widehat{ABC+\widehat{ACB=90^o}}\)
\(55^o+\widehat{ACB=90^o}\)
\(\Rightarrow\widehat{ACB=35^o}\)
Nên \(\widehat{ACB< \widehat{ABC}}\)
\(\Rightarrow AB< AC\) (quan hệ giữa góc và cạnh đối diện trong tam giác).
b) Xét hai tam giác vuông ABD và AED có:
AB = AE (gt)
AD: cạnh chung
Vậy: \(\Delta ABD=\Delta AED\left(hcgv\right)\)
c) Hai trung tuyến BD và AF cắt nhau tại G nên G là trọng tâm của
\(\Delta ABC\)
Ta có: DG = \(\dfrac{1}{3}BD\)
Hai trung tuyến ED và AK cắt nhau tại H nên H là trọng tâm của
\(\Delta AEC\)
Ta có: DH = \(\dfrac{1}{3}ED\)
Mà BD = ED (\(\Delta ABD=\Delta AED\))
Nên DG = DH
Do đó: \(\Delta GDH\) cân tại D (đpcm).
A B C D E 1 2
vì AC>AB mà AB=AD nên AD<AC mặt khác D thuộc AC nên D nằm giữa A và C
TA có: E thuộc đường trung trực của DB nên E cách đều D và B suy ra DE=DB
E thuộc đường trung trực của AC nên E cách đều A và C suy ra EA=EC
Xét \(\Delta AEB\)và \(\Delta CED\)
có\(\hept{\begin{cases}AB=DC\left(gt\right)\\BE=ED\left(cmt\right)\\AE=EC\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta AEB=\Delta CED\left(c.c.c\right)\)
b, Do \(\Delta AEB=\Delta CED\left(c.c.c\right)\left(cmt\right)\)
Nên \(\Rightarrow\widehat{A_1}=\widehat{DCE}\)(2 góc tương ứng bằng nhau) (1)
Mà AE=EC suy ra tam giác AEC cân tại E
\(\Rightarrow\widehat{A_2}=\widehat{DCE}\)(2)
Từ 1 và 2 suy ra \(\widehat{A_1}=\widehat{A_2}\left(=\widehat{DCE}\right)\)
suy ra AE là phân giác của góc trong tại đỉnh A của tam giác ABC
2 đường kẻ hồng hồng là đường ttrung trực nha!
còn màu xanh lam là mk nối thêm cho ra tam giác