\(\Delta ABC\)có 3 góc nhọn(AB<AC) .Vẽ 2 đường cao BE và CF.

a)Cm: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó; ΔABE đồng dạng với ΔACF

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc BAC chung

DO đó: ΔAEF đồng dạng với ΔABC

c: Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc BIF chung

Do đó: ΔIBF đồng dạg vớiΔIEC

Suy ra: IB/IE=IF/IC

hay \(IB\cdot IC=IE\cdot IF\)

9 tháng 4 2018

A B E C F H

a) Xét \(\Delta ABE,\Delta ACF\) có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

b) Xét \(\Delta BFH,\Delta CEH\) có :

\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^o\\\widehat{BHF}=\widehat{CHE}\left(\text{Đối đỉnh}\right)\end{matrix}\right.\)

=> \(\Delta BFH\sim\Delta CEH\left(g.g\right)\)

\(\Rightarrow\dfrac{CH}{BH}=\dfrac{EH}{CF}\)

\(\Rightarrow CH.CF=BH.EH\)

10 tháng 4 2018

phần b sai rồi bạn

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằnga, Tứ giác AIHk là hình chữ nhật  b, \(\Delta AKI\) \(\sim\Delta ABC\)c, Tính diện tích \(\Delta ABC\)Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cma, C/m : \(\Delta ABE\sim\Delta...
Đọc tiếp

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng

a, Tứ giác AIHk là hình chữ nhật  

b, \(\Delta AKI\) \(\sim\Delta ABC\)

c, Tính diện tích \(\Delta ABC\)

Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm

a, C/m : \(\Delta ABE\sim\Delta DEC\)

b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)

c, Tính BC

Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E

a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)

b, Tính độ dài các đoạn thẳng BC , BD

c, Tính độ dài AD

d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE

2
23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

25 tháng 7 2018

A B C D E F

Xét \(\Delta ABE\)và   \(\Delta ACF\)có:

    \(\widehat{A}\)chung

   \(\widehat{AEB}=\widehat{AFC\:}=90^0\)

suy  ra:   \(\Delta ABE~\Delta ACF\)(g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)hay  \(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\)có:

   \(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)

   \(\widehat{A}\) chung

suy ra:  \(\Delta AEF~\Delta ABC\) (c.g.c)

Bài 1:

a) Ta có: a≤b(gt)

⇔2019a≤2019b(nhân cả hai vế của bất đẳng thức cho 2019)

⇔2019a+(-2020)≤2019b+(-2020)(cộng cả hai vế của bất đẳng thức cho -2020)

hay 2019a-2020≤2019b-2020(đpcm)

b) Ta có: \(1+\frac{1+x}{3}\le\frac{3x-2}{2}\)

\(\Leftrightarrow\frac{6}{6}+\frac{2\left(1+x\right)}{6}\le\frac{3\left(3x-2\right)}{6}\)

\(\Leftrightarrow6+2\left(1+x\right)\le3\left(3x-2\right)\)

\(\Leftrightarrow6+2+2x\le9x-6\)

\(\Leftrightarrow8+2x-9x+6\le0\)

\(\Leftrightarrow-7x+14\le0\)

\(\Leftrightarrow-7x\le-14\)(cộng hai vế của bất đẳng thức cho -14)

\(\Leftrightarrow x\ge2\)(nhân hai vế của bất đẳng thức cho \(\frac{-1}{7}\) và đổi chiều)

Vậy: S={x|x≥2}

c) ĐKXĐ: x∉{0;-2}

Ta có: \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\)

\(\Leftrightarrow\frac{\left(x+2\right)^2}{x\left(x+2\right)}-\frac{x^2+5x+4}{x\left(x+2\right)}-\frac{x^2}{x\left(x+2\right)}=0\)

Suy ra: \(x^2+4x+4-x^2-5x-4-x^2=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x+1=0\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\)

Vậy: S={-1}

Bài 2:

a) Xét ΔABE và ΔACF có

\(\widehat{AEB}=\widehat{AFC}\)(=900)

\(\widehat{A}\) chung

Do đó: ΔABE∼ΔACF(g-g)

b) Ta có: ΔABE∼ΔACF(cmt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

hay \(\frac{AB}{AE}=\frac{AC}{AF}\)

\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\frac{AE}{AB}=\frac{AF}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

\(\widehat{AFE}=\widehat{ACB}\)(hai góc tương ứng)