\(\Delta ABC\)có 3 góc nhọn. Kẻ \(BD\perp AC\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

Hình bạn tự vẽ nhé!

Giải:

Vì D là trung điểm của AC (gt)

nên AD = CD

Xét \(\Delta ABD\) và \(\Delta CED\) có:

AD = CD (chứng minh trên)

\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)

ED = BD (gt)

\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c)   (1)

\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)  

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)AB // CD  (dấu hiệu nhận biết)  (2)

Từ (1), (2) \(\Rightarrowđpcm\)

b) Ta có: AF _|_ BD tại F

              CG _|_ DE tại G

\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)

\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)

Xét \(\Delta ADF\) và \(\Delta CDG\) có:

AD = CD (chứng minh trên)

\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)

\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)

\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)

\(\Rightarrow\) DF = DG (2 cạnh tương ứng)  (4)

Từ (3), (4) \(\Rightarrowđpcm\)

c) Xét \(\Delta CDE\) có:

Giao điểm 2 đường thẳng CG và EI là M

CG, EI đều là đường cao của \(\Delta CDE\)

\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)

\(\Rightarrow DM\perp AB\)(5)

Xét \(\Delta ABD\) có:

Giao điểm 2 đường thẳng CG, EI là M

AF, BH đều là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\perp AB\) (6)

Từ (5), (6) suy ra đpcm

10 tháng 2 2018

Giải một ý thôi

A B C D E K H

Ta có: \(\widehat{ACK}=\widehat{A}+\widehat{AEC}=\widehat{A}+90^o\)( tính chất góc ngoài)

\(\widehat{ABH}=\widehat{A}+\widehat{ADB}=\widehat{A}+90^o\)( tính chất góc ngoài)

\(\Rightarrow\widehat{ACK}=\widehat{ABH}\)

Xét tam giác ABH và tam giác KCA có:

\(\Rightarrow\Delta ABH=\Delta KCA\left(c-g-c\right)\hept{\begin{cases}BH=CA\left(gt\right)\\\widehat{ABH}=\widehat{KCA}\left(cmt\right)\\AB=CK\left(gt\right)\end{cases}}\)

\(\Rightarrow AH=AK\)(cạnh tương ứng) 

=> đpcm

10 tháng 2 2018

Bạn vẽ hình đi mk làm cho nha

5 tháng 7 2017

A B C E D I K

Ta có \(\widehat{ABI}\)là góc ngoài của \(\Delta ABD\Rightarrow\widehat{ABI}\)\(=90^0+\widehat{A}\)

         \(\widehat{ACK}\)là góc ngoài của \(\Delta ACE\Rightarrow\widehat{ACK}\)\(=90^0+\widehat{A}\)

\(\Rightarrow\widehat{ABI}\)\(=\widehat{ACK}\)

Xét \(\Delta IBA\)\(\Delta ACK\)có :

           IB = AC (gt)

           \(\widehat{ABI}\)\(=\widehat{ACK}\)( cmt)

           AB = CK ( gt )

\(\Rightarrow\Delta IBA=\Delta ACK\)( c . g . c )

\(\Rightarrow AI=AK\)( 2 cạnh tương ứng )                                                           (1)

 Vì \(\Delta AKE\)vuông tại A \(\Rightarrow\widehat{EAK}\)+\(\widehat{AKE}=90^0\)

               Mà \(\widehat{AKE}=\widehat{IAB}\)( vì \(\Delta IBA=\Delta ACK\left(cmt\right)\)

\(\Rightarrow\widehat{IBA}+\widehat{EAK}=90^0\)                                                                     (2)

 Từ (1) và (2) \(\Rightarrow\)\(\Delta AIK\)vuông cân tại A

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng