Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
#)Giải :
a) Áp dụng định lí py - ta - go :
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\Rightarrow AC=\sqrt{36}=6\)
b) Dễ c/m \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)
\(\Rightarrow BD=BC\) (cặp cạnh t/ứng = nhau)
\(\Rightarrow\Delta BDC\) cân tại B
A C B D E M
Giải: a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AC2 = BC2 - AB2 = 102 - 82 = 100 - 64 = 36
=> AC = 6
b) Xét t/giác ABC và t/giác ABD
có: AB : chung
\(\widehat{BAC}=\widehat{BAD}=90^0\) (gt)
AC = AD (gt)
=> t/giác ABC = t/giác ABD (c.g.c)
=> BC = BD (2 cạnh t/ứng)
=> t/giác BDC cân tại B
c) Ta có: AM // BD => \(\widehat{D}=\widehat{MAC}\)(đồng vị)
mà \(\widehat{D}=\widehat{C}\)(vì t/giác ABC = t/giác ABD)
=> \(\widehat{MAC}=\widehat{C}\) => t/giác MAC cân tại M => MA = MC (1)
AM // BD => \(\widehat{DBA}=\widehat{BAM}\)(so le trong)
mà \(\widehat{DBA}=\widehat{ABM}\) (vì t/giác ABC = t/giác ABD)
=> \(\widehat{BAM}=\widehat{ABM}\) => t/giác ABM cân tại M => BM = AM (2)
Từ (1) và (2) => BM = CM
d) Xét t/giác AMB và t/giác EMC
có: AM = ME (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
BM = CM (cmt)
=> t/giác AMB = t/giác EMC (c.g.c)
=> \(\widehat{BAM}=\widehat{MEC}\) (2 góc t/ứng)
Tương tự, xét t/giác BME và t/giác CMA
=> t/giác BME = t/giác CMA (c.g.c)
=> \(\widehat{BEM}=\widehat{MAC}\) (2 góc t/ứng)
Ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\) (phụ nhau)
=> \(\widehat{CEM}+\widehat{BEM}=90^0\)
=> \(\widehat{BEC}=90^0\)
Kẻ OF//BC(F thuộc AC)
=>OF//DE//BC
DE//BC
=>góc DEA=góc ACB
=>góc DEO=1/2*góc ACB
ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF
=>góc EOF=1/2*góc ACB
=>góc DEO=góc EOF
OF//BC
=>góc FOB=góc OBC=1/2góc ABC
góc BOE=góc BOF+góc EOF
=1/2(góc ABC+góc ACB)