Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét 2 tam giác ABI và ACI \((\widehat {AIB} = \widehat {AIC} = 90 độ)\)
AB = AC
AI là góc chung
Do đó tam giác ABI = tam giác ACI (cạnh huyền-cạnh góc vuông)
=> BI = CI (2 góc tương ứng)
b) từ tam giác ABI = tam giác ACI -> \(A_1=A_2\)
Xét 2 tam giác AEI và AFI. CÓ:
AE = AF (gt)
AI là cạnh chung
\(A_1=A_2\)
Do đó tam giác AEI = tam giác AFI (c.g.c)
=> EI = FI
-> ΔIEFlà tam giác cân tại I
c)
tam giác AEF cân tại A (vì có AE = AF) => góc E = góc F
Xét tam giác AEF có: góc A + góc E + góc F = 180 độ
-> góc E = \(\frac{\text{180 độ - góc A}}{2}\)(1)
Xét tam giác ABC có: góc A + góc B + góc C
-> \(\frac{\text{180 ĐỘ - GÓC A }}{2}\) (2)
Từ (1) và (2) suy ra góc E = góc B (2 góc nằm ở vị trí 2 góc đồng vị) -> EF song song với BC
chúc bạn học tốt
Hình tự vẽ nha
a. Xét 2 tam giác vuông ABI và AIC có
AB = AC ( gt )
góc ABI = góc ACI ( tam giác ABC cân )
=> tam giác ABI = tam giác ACI (cạnh huyền-góc nhọn)
=> BI = CI (t.ư)
b. ta có : EB = AB - AE
FC = AC - AF
mà AB = AC và AE = AF
=> EB = FC
Xét tam giác ABI và tam giác FIC có
EB = FC ( cmt )
BI = CI ( câu a)
góc EBI = góc FCI ( tam giác ABC cân )
=> tam giác EBI = tam giác FCI ( c.g.c )
=> EI = IF ( t.ư )
=> Tam giác IEF cân tại I
c. Vì tam giác ABI = tam giác ACI
=> góc BAI = góc CAI
Xét tam giác AEP và tam giác AFP có
AE = AF ( gt )
AP chung
góc EAP = FAP ( cmt )
=> tam giác AEP = tam giác AFP ( c.g.c )
=> góc APE = góc APF
mà góc APE + góc APF = \(180^o\)
=> góc APE = góc APF = \(180^o\)
=> AP vuông góc EF
=> AI vuông góc với EF
mà AI vuông góc với BC
=> EF // BC
Chúc bạn học giỏi !
A B C E M
a) Xét hai tam giác vuông ABM và ECM có:
MB = MC (gt)
MA = ME (gt)
Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)
b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)
Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)
Mà \(\widehat{ABM=90^o}\)
Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB
c) Vì \(\Delta ABC\) vuông tại B
nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))
\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AB = CE (\(\Delta ABM=\Delta ECM\))
Do đó: AC > CE
d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))
Mà hai góc này ở vị trí so le trong
Vậy: BE // AC.
12 10 10 A B C M a)
Vì AM là trung tuyến đến BC, nên có \(BM=CM=\dfrac{12}{2}=6\left(cm\right)\)
Xét \(\Delta\)ABM và \(\Delta\)ACM, có:
AM là cạnh chung
AB=AC (gt)
BM=MC (AM là trung tuyến đến BC)
\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}\) và \(\widehat{AMC}\) là 2 góc kề bù, nên:
\(\widehat{AMB}+\widehat{AMC}=180độ\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90\left(độ\right)\)
\(\Rightarrow AM\perp BC\) (đpcm)
Câu b mik lm ko ra số nguyên nhé!!!
Có j thì bn thông cảm nha!
Chúc bạn học tốt!!!
Bn tự vẽ hình nha .
a, Ta có : AB = AC = 10cm
ABC cân tại A .
Mà trong tam giác cân , đường trung tuyến cx là đường cao nên ta có điều phải chứng minh .
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
C A B 1 2 H E D F I 1 2 1 2 30 độ
Gọi giao điểm của CE và AH là I
Kéo dài tia CE cắt DB tại F
a) Xét tam giác CAE (\(\widehat{CAE}=90^o\)) và tam giác CHE (\(\widehat{CHE}=90^o\)) có
\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)
CE : cạnh chung
=> tam giác CAE = tam giác CHE (cạnh huyền - góc nhọn)
=> CA = CH (2 cạnh tương ứng)
EA = EH (2 cạnh tương ứng)
b) Xét tam giác ADE \(\left(\widehat{DAE}=90^o\right)\) và tam giác HBE \(\left(\widehat{BHE}=90^o\right)\) có :
EA = EH (cmt)
\(\widehat{AED}=\widehat{HEB}\) (đối đỉnh)
=> tam giác ADE = tam giác HBE (cạnh góc vuông - góc nhọn kề)
=> AD = HB (2 cạnh t/ứng)
c) Xét tam giác ABC vuông tại A (gt)
=> \(\widehat{C}+\widehat{ABC}=90^o\) (tính chất)
Mà \(\widehat{ABC}=30^o\left(gt\right)\) => \(\widehat{C}=60^o\)
Ta có : \(\left\{\begin{matrix}CA+AD=CD\\CH+HB=CB\end{matrix}\right.\)
Mà : CA = CH (cmt) ; AD = HB (cmt)
=> CD = CB
=> tam giác DBC cân tại C
Mà \(\widehat{C}=60^o\left(cmt\right)\) => tam giác DBC đều
Ta có : CA = CH (cmt)
=> tam giác AHC cân tại C
Mà \(\widehat{C}=60^o\left(cmt\right)\) => tam giác AHC đều
Vì CE là tia phân giác góc C => \(\widehat{C}_1=\widehat{C_2}=\frac{\widehat{C}}{2}=60^o:2=30^o\)
Mà \(\widehat{ABC}=30^o\) (gt) => tam giác EBC cân tại E
d) Xét tam giác ACI và tam giác HCI có:
CA = CH (cmt)
\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)
CI : cạnh chung
=> tam giác ACI = tam giác HCI (c.g.c)
=> \(\widehat{I_1}=\widehat{I_2}\) (2 góc t/ứng)
Mà \(\widehat{I_1}+\widehat{I_2}=180^o\) (kề bù) => \(\widehat{I_1}=\widehat{I_2}=90^O\Rightarrow CI\perp AH\) (1)
Xét tam giác CDF và tam giác CBF có:
CD = CB (cmt)
\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)
CF : cạnh chung
=> tam giác CDF = tam giác CBF (c.g.c)
=> \(\widehat{ F_1}=\widehat{F_2}\) (2 góc t/ứng)
CM tương tự ta có : \(CF\perp DB\) (2)
Từ (1) và (2) => \(\)AH // DB (từ vuông góc đến song song)
a) xét tam giác AEC vuông tại A ( tam giác ABC vuông tại A theo giả thiết ) và tam giác HCE vuông tại H ( EH vuông góc với BC theo giả thiết) có
CE là cạnh chung
góc ACE = Góc HCE ( CE là tia phân giác góc ACB)
=> tam giác ACE = tam giác HCE ( cạnh huyền - góc nhọn)
=> CA = CH ; EA = EH ( các cạnh tương ứng)
Xét \(\Delta\)ABC có góc B < góc C
=> AC < AB ( quan hệ giữagóc và cạnh đối diện trong một tam giác )
=> HC < HB ( Quan hệ giữa đường xiên và hình chiếu )
=> MC < MB ( Quan hệ giữa đường xiên và hình chiếu )
Xét \(\Delta AMB\) và \(\Delta ANC\) có:
AB = AC (\(\Delta ABC\) cân tại A)
vì BM là trung tuyến => AM = MC
CN là trung tuyến => AN = NB
mà AB = AC (\(\Delta ABC\) cân tại A) => AM = MC = AN = NB
=> AM = AN (cmt)
\(\widehat{A}\) chung
=> \(\Delta AMB=\Delta ANC\left(c.g.c\right)\)
=> \(\widehat{ABM}=\widehat{ACN}\) (2 cạnh tương ứng)
Ta có:
\(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
Mà \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
=> \(\widehat{ABM}+\widehat{MBC}=\widehat{ACN}+\widehat{NCB}\)
mà \(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
=> \(\widehat{MBC}=\widehat{NCB}\)
\(\Delta GBC\) có: \(\widehat{GBC}=\widehat{GCB}\left(cmt\right)\)
=> \(\Delta GBC\) cân tại G (đpcm)
A B C H O F E 1 1 1 1 1 2
Giải:
a) Xét \(\Delta BEC,\Delta CFB\) có:
\(\widehat{E_1}=\widehat{F_1}=90^o\)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CFB\) ( c.huyền - g.nhọn ) ( đpcm )
b) Vì \(\Delta BEC=\Delta CFB\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )
\(\Rightarrow\Delta BOC\) cân tại O
\(\Rightarrow OB=OC\)
Xét \(\Delta ABO,\Delta ACO\) có:
AB = AC ( t/g ABC cân tại A )
AO: cạnh chung
OB = OC ( cmt )
\(\Rightarrow\Delta ABO=\Delta ACO\left(c-c-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) ( góc t/ứng )
\(\Rightarrow AO\) là tia phân giác của \(\widehat{A}\) ( đpcm )
c) Áp dụng định lí Py-ta-go vào \(\Delta BEC\left(\widehat{E_1}=90^o\right)\)ta có:
\(BC^2=BE^2+CE^2\)
\(\Rightarrow13^2=BE^2+5^2\)
\(\Rightarrow BE^2=144\)
\(\Rightarrow BE=12\)
d) Xét \(\Delta ABH,\Delta ACH\) có:
AB = AC ( t/g ABC cân tại A )
\(\widehat{A_1}=\widehat{A_2}\) ( theo b )
AH: cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) ( góc t/ứng )
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)
\(\Rightarrow AH\perp BC\)
hay \(AO\perp BC\) tại H ( đpcm )
Vậy...
I don't Know