\(\Delta ABC\)cân ở \(A\).Trên cạnh ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

A B C M N H I K

Cm: a) Ta có: AM + AN = 2AB

hay AM + AC + CN = AB + AB

=> AM + CN = AB (vì AC = AB)

Mà AM + MB = AB (M thuộc AB)

=> BM = CN (Đpcm)

b) Gọi giao điểm của BC và MN là I. Kẻ đường thẳng MH // AN

Do MH // AN => góc MHB = góc ACH 

Mà góc B = góc ACH ( vì t/giác ABC cân)

=> góc B = góc MHB => t/giác BMH cân tại M

                               => MB = MH

                      Mà MB = CN (cm câu a) 

                 => MH = CN

Xét t/giác MHI có góc HMC + góc MIH + góc IHM = 1800 (tổng 3 góc của  1 t/giác)

Xét t/giác CNI có góc N + góc NCI + góc CIN = 1800 (tổng 3 góc của 1 t/giác)

Và góc MIH = góc CIN (đối đỉnh); góc MHI = góc ICN (so le trong vì MH//AC)

=> góc HMI = góc N

Xét t/giác MHI và t/giác NCI

có MH = CN (cmt)

  góc MHI = góc ICN (so le trong vì MH // AC)

  góc HMI = góc N (cmt)

=> t/giác MHI = t/giác NCI (g.c.g)

=> MI = IN (hai cạnh tương ứng)

=> HC đi qua trung điểm của đoạn thẳng MN

hay BC đi qua trung điểm của đoạn thẳng MN

c) Xem rồi lm

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H

25 tháng 5 2018

Bạn cũng xem '' Yêu em từ cái nhìn đầu tiên '' à ?

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
27 tháng 12 2017

a, Xét ΔAIB và ΔAIC

có: AB=AC

IB=IC

AI là cạnh chung

=> ΔAIB và ΔAIC

=> ^BÃI=^CAI

=> AI là tia phân giác ^BAC

b, Xét ΔABM và ΔANC

có: MB=NC

AB=AC

^MBA=^NCA( ^ABI=^ACI)

=> ΔABM = ΔANC

=> AM=AN

c, chưa đủ ý