Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)
Tổng của \(\widehat{B}\) và \(\widehat{C}\) là:
\(180^o-60^o=120^o\)
Ta có \(\widehat{B}=2\widehat{C}\Leftrightarrow\widehat{B}=\frac{2}{1}\widehat{C}\)
Áp dụng bài toán tổng tỉ.
Tổng số phần bằng nhau là:
2 + 1 = 3 phần.
Góc B là:
120 : 3 x 2 = 80 độ
Góc C là:
120 - 80 = 40 độ.
Vậy ......................
2) Theo đề ta có:
\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^o}{9}=20^o\)
\(\hept{\begin{cases}\frac{\widehat{A}}{2}=20^o\Rightarrow\widehat{A}=20^o.2=40^o\\\frac{\widehat{B}}{3}=20^o\Rightarrow\widehat{B}=20^o.3=60^o\\\frac{\widehat{C}}{4}=20^o\Rightarrow\widehat{C}=20^o.4=80^o\end{cases}}\)
Vậy ..............................

a) Ta có: \(\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^{\circ}\) (Tổng ba góc trong tam giác)
<=> \(\left.\begin{matrix} \widehat{B}+\widehat{C}=180-\widehat{A}=180^{\circ}-100^{\circ}=80^{\circ} & & \\ \widehat{B}-\widehat{C}=30^{\circ} & & \end{matrix}\right\}\)
=> \(2\widehat{B}=110^{\circ}\)
=> \(\widehat{B}=55^{\circ}\)
=> \(\widehat{C}=25^{\circ}\)
P/s: câu b tương tự

a) ΔABC có:
\(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 180o hay 100o + \(\widehat{B}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{B}\) + \(\widehat{C}\) = 180o - 100o = 80o
Ta có: \(\widehat{B}\) + \(\widehat{C}\) = 80o(cm trên) ; \(\widehat{B}\) - \(\widehat{C}\) = 50o (gt)
\(\Rightarrow\) \(\widehat{B}\) = (80o + 50o ) : 2 = 65o
\(\widehat{C}\) = (80o - 50o) : 2 = 15o
b) ΔABC có:
\(\widehat{B}\) + \(\widehat{A}\) + \(\widehat{C}\) = 180o hay 80o + \(\widehat{A}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{A}\) + \(\widehat{C}\) = 180o - 80o = 100o
Ta có: 3 . \(\widehat{A}\) = 2 . \(\widehat{C}\) => \(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\) = \(\frac{\widehat{A}+\widehat{C}}{2+3}\) = \(\frac{100}{5}\) = 20
\(\Rightarrow\) \(\begin{cases}\widehat{A}=40^o\\\widehat{C}=60^o\end{cases}\)

Bài 1:
\(\widehat{A}\div\widehat{B}\div\widehat{C}=1\div2\div3=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của một tam giác)
Áp dụng t/d dãy tỉ số bằng nhau, ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30\)
\(\Rightarrow\widehat{A}=30.1=30^0\)
\(\widehat{B}=30.2=60^0\)
\(\widehat{C}=30.3=90^0\)
Vậy .....
Bài 2:
Gọi số đo các góc của tam giác ABC lần lượt là: a;b;c (\(a;b;c\inℕ^∗\) )
Ta có: \(a-b=18^0\Rightarrow a=18+b\)
\(b-c=18^0\Rightarrow c=b-18\)
Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow a+b+c=180^0\)
\(\Leftrightarrow18+b+b+b-18=180^0\)
\(\Leftrightarrow3b=180^0\Rightarrow b=60\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{A}=18^0+\widehat{B}=18^0+60^0=78^0\)
\(\Rightarrow\widehat{C}=180^0-60^0-78^0=42^0\)
Vậy .....

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\widehat{A}=180^0\)
=>\(\widehat{A}=90^0\)
=>\(\widehat{B}+\widehat{C}=90^0\)
\(\Leftrightarrow3\cdot\widehat{B}=90^0\)
\(\Leftrightarrow\widehat{B}=30^0\)
\(\widehat{C}=2\cdot30^0=60^0\)
nên \(\widehat{BCD}=30^0\)
\(\widehat{BDC}=180^0-30^0-30^0=120^0\)

A H B C
Theo đề ta có: \(\widehat{BAH}=2\widehat{CAH}\Rightarrow\widehat{A}=3\widehat{CAH}\)
Mà \(\widehat{A}=72^o\left(gt\right)\) \(\Rightarrow3\widehat{CAH}=72^o\)
\(\Rightarrow\widehat{CAH}=24\) \(\Rightarrow BAH=24^o.2=48^o\)
Ta lại có: \(\widehat{B}+\widehat{BAH}=90^o\) (định lí của một tam giác vuông)
hay \(\widehat{B}+48^o=90^o\Rightarrow\widehat{B}=42^o\)
Tương tự: \(\widehat{C}+\widehat{CAH}=90^o\)
hay \(\widehat{C}+24^o=90^o\Rightarrow\widehat{C}=66^o\)
Vậy góc B có số đo là \(42^o\)
góc C có số đo là \(66^o\)