Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D
a.Xét tgiac ADB và tgiac ACI có:
góc BAD = góc IAC(gt)
góc BDA= góc ICA(gt)
Vậy tgiac ADB đồng dạng với tgiac ACI(g.g)
=> góc ABD = góc AIC => góc ABD = góc DIC
b.xét tgiac ADB và tgiac CDI có:
góc ADB= góc CDI(đối đỉnh)
góc ABD= góc CID(cmt)
vậy tgiac ADB đồng dạng với tgiac CDI(g.g)
c.theo câu a tgiac ADB đồng dạng với tgiac ACI nên ta có:
\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AB.AC=AD.AI(1)
theo câu b ta lại có tgiac ADB đồng dạng với tgiac CDI nên ta có:
\(\frac{BD}{DI}\)=\(\frac{AD}{CD}\)=> BD.CD=DI.AD(2)
TỪ (1) VÀ (2) ta có:
AB.AC-DB.DC=AD.AI-DI.AD=AD.(AI-DI)=AD.AD=\(AD^2\)(ĐPCM)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)
Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)
Từ (1) và (2) suy ra MN/AD=MH/AC
hay MN/MH=AD/AC
a) Xét tam giác BAD và tam giác MCD có:
góc BAD = MCD (gt)
góc ADB = CDM (2 góc đối đỉnh)
=> 2 tam giác trên đồng dạng => AB/CM = DB/DM => AB.DM = DB.CM
b) Tam giác BAD đồng dạng vói MCD (cmt) => góc ABD = CMD
Xét tam giác ABD và AMC có: góc BAD = MAC (gt)
góc ABD = ACM (cmt)
=> 2 tam giác trên đồng dạng
Còn ý d bạn dùng định lý Ceva nha.
A B c D M
a, \(\Delta ABC\) và \(\Delta DEC\) có
\(\widehat{BAC}=\widehat{EDC}\left(gt\right)\)
do đó \(\Delta ABC\sim\Delta DEC\)
b,từ câu a suy ra
\(\frac{AB}{DE}=\frac{AC}{DC}hay\frac{AB}{AC}=\frac{DE}{DC}\)(1)
do AD là tia phân giác của góc BAC ta có
\(\frac{AB}{AC}=\frac{BD}{CD}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{DE}{DC}=\frac{DB}{DC}dođóDE=BD\)
Bài này dễ mà. Bạn tham khảo cách chứng minh định lí ở bài 3 TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ( SGK Toán 8 tập hai - T65) nhé!