Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vè hình nha bạn
Ta có : \(\widehat{ABE}=\widehat{EBC}=\dfrac{\widehat{ABC}}{2}=10^o\)(phân giác của \(\widehat{ABC}\))
=>\(\widehat{ÀFE}=\widehat{ABE}+\widehat{FAB}=10^o+20^o=30^o\)( tính chất góc ngoài tam giác AFE)
mà \(\widehat{FAE}=\widehat{BAC}-\widehat{FAB}=50^0-20^0=30^0\\ \Rightarrow\widehat{AFE}=\widehat{FAE}\)
=>△AFE cân tại E
=> EI là đường trung tuyến đồng thời là đường cao
=>△EIF ⊥ tại I
=>\(\widehat{KEF}=90^o-\widehat{AFE}=90^0-30^0=60^0\)
mà \(\widehat{BEC}=\widehat{BAC}+\widehat{ABE}=50^0+10^0=60^0\)
=>\(\widehat{BEC}=\widehat{BEC}\)
Xét ΔBKE và ΔBCE có :
\(\widehat{ABE}=\widehat{EBC}\left(gt\right)\)
BE là cạnh chung
\(\widehat{BEC}=\widehat{BEC}\)(cmt)
=>ΔBKE =ΔBCE(g-c-g)
=>BK=BC
=> ΔBKC cân tại B
=> \(\widehat{BCK}=\dfrac{180^0-\widehat{ABC}}{2}=\dfrac{180^0-20^0}{2}=80^o\)
A B C M N I 60 o
Tam giác ABC có: góc BAC+góc ABC+góc ACB=180o=>60o+góc ABC+góc ACB=180o
=> góc ABC+góc ACB=120o
góc ABM=góc MBC=1/2 góc ABC (vì BM là tia phân giác góc ABC)
góc ACN=góc NCB=1/2 góc ACB (vì CN là tia phân giác góc ACB)
=>góc ABM+góc ACN=góc MBC+góc NCB=1/2 góc ABC+1/2 góc ACB=1/2(góc ABC+góc ACB)=(1/2).120o=60o
góc BIC+góc IBC+góc ICB=180o=>góc BIC+60o=180o=>góc BIC=120o
góc BIN kề bù với góc BIC => góc BIN+góc BIC=180o=>góc BIN+120o=180o=>góc BIN=60o
tra loi:
, Xét hai tam giác AMC và tam giác BME, ta có:
AM=ME (giả thiết)
góc BME= góc AMC (2 góc đối đỉnh)
BM=MC (M là trung điểm của BC)
Suy ra: tam giác AMC= tam giác BME (c.g.c)
=> AC=BE (hai cạnh tương ứng) (ĐPCM)
=>góc MAC= góc MEB (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)
b, Xét tam giác AMI và tam giác EMK, ta có:
KE=AI (giả thiết)
góc CAM= góc EMK(chứng minh trên)
AM=Me ( giả thiết)
Suy ra: tam giác AMI= tam giác EMK(c.g.c)
=> góc AMI= góc EMK (2 góc tương ứng)
Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)
Do đó: góc IME+ góc EMK= 180 độ
Hay 3 điểm I,M,K thẳng hàng (ĐPCM)
c, Vì góc HME là góc ngoài của tam giác BME nên:
HME= MBE+ MEB
= 50 độ+ 25 độ
= 75 độ
Xét tam giác vuông có H1= 90 độ, ta có
HME+HEM= 90 độ
=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ
Theo định lí tổng 3 góc trong tam giác BME, ta có:
BME+ MBE+ BEM= 180 độ
=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ .
Vậy HEM=15 độ
BME= 105 độ
Tick mình nhá
cho tam giác ABC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm E sao cho ME=MA . chứng minh rằng:
a)AC=EB và AC//BE
b) gọi I là một điểm trên AC , K là một điểm trên EB sao cho AI=EK . Chứng minh ba điểm I,M,K thẳng hàng.