\(\Delta ABC\) vuông tại A. Vẽ phân giác BD và CE cắt nhau tại O

a, Tính số...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

~ Tự vẽ hình nha ~
Chứng minh :
a) BD là phân giác của \(\widehat{ABC}\)\(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)
CE là phân giác của \(\widehat{BCA}\)\(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{CBD}+\widehat{BCE}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{BCA}}{2}=\dfrac{\widehat{ABC}+\widehat{BCA}}{2}=\dfrac{90^o}{2}=45^o\)
\(\widehat{BOC}+\widehat{OBC}+\widehat{BCO}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)\(\widehat{BOC}+45^o=180^o\)
\(\widehat{BOC}=180^o-45^o\)
\(\widehat{BOC}=135^o\)
b) Xét △BDA và △BDM có :
BA = BM ( gt )
\(\widehat{ABD}=\widehat{MBD}\text{ ( gt )}\)
BD - cạnh chung
⇒ △BDA = △BDM ( c.g.c )
\(\widehat{BAD}=\widehat{BMD}\text{ ( tương ứng )}\)
\(\widehat{BMD}\text{ }=90^o\)
Tương tự :
△EAC=△ENC ( c.g.c)
\(\widehat{EAC}=\widehat{ENC}\text{ ( tương ứng )}\)
\(\widehat{DMN}+\widehat{ENM}=90^o+90^o=180^o\)
\(\widehat{DMN}\text{ và }\widehat{ENM}\text{ là 2 góc trong cùng phía }\)
⇒ EN // DM

17 tháng 1 2018

A C B D E O N M

a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)

Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)

b) Xét tam giác BAD và BMD có:

Cạnh BD chung

\(\widehat{B_1}=\widehat{B_2}\)

AB = MB  (gt)

\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)

\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)

Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)

Ta có EN và DM cùng vuông góc với BC nên EN // DM

c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)

Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)

Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)

Vậy nên OA = OM = ON

d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)

\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)

\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)

\(\Rightarrow\widehat{NOM}=90^o\)  (Dạng bài qua O kẻ đường thẳng song song với EN và DM)

Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)

Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)

\(\Leftrightarrow\widehat{2MAN}=90^o\)

\(\Leftrightarrow\widehat{MAN}=45^o\)

21 tháng 2 2018

ko ai giải p c à

6 tháng 5 2018

a.xét \(\Delta ABC\)vuông tại A có

\(\widehat{B}+\widehat{C}=90^0\)(1)

\(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\)(BD là tia phân giác của \(\widehat{B}\))(2)

\(\widehat{ACE}=\widehat{ECB}=\frac{\widehat{C}}{2}\)(CE là tia phân giác của \(\widehat{C}\))(3)

từ(1)(2)(3)=>\(\widehat{DBC}+\widehat{ECB}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^0}{2}=45^0\)

Xét \(\Delta OBC\)

\(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^0\)

Hay\(45^0+\widehat{BOC}=180^0=>\widehat{BOC}=180^0-45^0=135^0\)

b.xét\(\Delta ABD\)\(\Delta MBD\)

\(\widehat{ABD}=\widehat{MBD}\left(cmt\right)\)

BD chung

BA=BM(gt)

=>\(\Delta ABD=\Delta MBD\)(c.g.c)=>\(\widehat{BAD}=\widehat{DMB}\)(hai góc tương ứng)mà\(\widehat{BAD}=90^0=>\widehat{BMD}=90^0\)

Xét\(\Delta EAC\)\(\Delta ENC\)

EC chung

CA=CN(gt)

\(\widehat{ACE}=\widehat{NCE}\left(cmt\right)\)

=>\(\Delta EAC=\Delta NEC\)(c.g.c)=>\(\widehat{EAC}=\widehat{ANC}\)(2 góc tương ứng)mà\(\widehat{A}=90^0\)=>\(\widehat{ENC}=90^0\)

-ta có:\(EN\perp NM\left(\widehat{ENM}=90^0\right)\)(4)

\(DM\perp NM\left(\widehat{DMN}=90^0\right)\)(5)

Từ(4)và(5)=.>\(EN//DM\)(từ vuông góc đến song song)

c.xét\(\Delta ABO\)\(\Delta MBO\)

\(\widehat{ABO}=\widehat{MBO}\left(cmt\right)\)

AO cạnh chung

BA=BM(gt)

=>\(\Delta ABO=\Delta AMO\)(c.g.c)

=>\(\widehat{BOA}=\widehat{BOM}\)(2 góc tương ứng)mà\(\widehat{BOA}+\widehat{BOM}=180^0\)(kề bù)

=>\(\widehat{BOA}=\widehat{BOM}=\frac{180^0}{2}=90^0\)mà OA=OM (\(\Delta BAO=\Delta BMO\))

=>BO là đường trung trực của đoạn thẳng AM mà \(I\in BO\)(AN cắt BO tại I)

=>\(IA=IM\)=>\(\Delta IAM\)cân 

A B C D E M N 1 1 2 2 3 3

Bài làm

a) Vì tam giác ABC cân tại A

=> Góc ABC = góc ACB ( 2 góc ở đáy )

Xét tam giác ABC ta có:

A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )

hay ABC + ACB = 180- A

=> 2ABC = 180o - A      ( 1 )   

Ta có: AB + BD = AD 

           AC + CE = AE

Mà AB = AC ( giả thiết ) 

      BD = CE ( giả thiết )

=> AD = AE

=> Tam giác ADE cân tại A

=> Góc D = góc E

Xét tam giác ADE 

Ta có: A + D + E = 180o 

hay D + E = 180o - A

=> 2D = 180o - A       ( 2 ) 

Từ ( 1 ) và( 2 ) => 2D = 2ABC 

                     => D = ABC

Mà góc D và góc ABC ở vị trí đồng vị

=> DE // BC ( đpcm )

b) Ta có: B1 = B2 ( 2 góc đối đỉnh )

               C1 = C2 ( 2 góc đối đỉnh )

Mà B1 = C1 ( tam giác ABC cân tại A )

=> B2 = C2

Xét tam giác MBD và tam giác NCE

có: Góc BMD = góc CNE = 90o 

cạnh huyền: BD = CE ( giả thiết )

Góc nhọn: B2 = C2 ( chứng minh trên )

=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )

=> MB = NC. ( 2 cạnh tương ứng )

Ta có: MB + BC = MC

           NC + BC = NB

Mà MB = NC ( chứng minh trên )

Cạnh BC chung

=> MC = NB

Xét tam giác ACM và tam giác ABN 

Có: AB = AC ( giả thiết )

       B1 = C1 ( Tam giác ABC cân tại A )

       MC = NB ( chứng minh trên )

=> Tam giác ACM = tam giác ABN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

=> Tam giác AMN cân tại A ( đpcm )

~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~

16 tháng 2 2019

a) Vì AB=AC mà BD=CE 

Suy ra :  AB+BD=AC+CE

Suy ra             AD= AE

Suy ra          tam giác DAE cân tại A

Suy ra           \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)

Ta có          tam giác ABC cân tại A

suy ra          \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)

Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)

mà hai góc ở vị trí đồng vị .  Suy ra  \(DE//BC\)