\(\Delta ABC\) vuông tại A, trung trưc  của  BC cắt AC và BC ơ D và E          ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

a. Ta có: \(\Delta CED\infty\Delta CAB\left(g-g\right)\Rightarrow\frac{CE}{CD}=\frac{CA}{CB}\Leftrightarrow\frac{CE}{CD}=\frac{CA}{2CE}\Leftrightarrow2CE^2=CA.CD\)

b. Áp dụng định lí Pytago vào tam giác vuông ABC tại A ta có: \(CA=\sqrt{BC^2-AB^2}=\sqrt{40^2-24^2}=32\)

Và \(BE=CE=\frac{CB}{2}=\frac{40}{2}=20\)

Từ phần a ta có: \(\frac{ED}{CE}=\frac{AB}{CA}\Leftrightarrow DE=\frac{CE.AB}{CA}=\frac{20.24}{32}=15\left(cm\right)\)

Theo phần a lại có: \(2CE^2=CA.CD\Leftrightarrow CD=\frac{2CE^2}{CA}=\frac{2.20^2}{32}=25\left(cm\right)\)

\(\Rightarrow DA=AC-CD=32-25=7\left(cm\right)\)

DD
9 tháng 6 2021

a) Tam giác \(ABC\)vuông tại \(A\)trung tuyến \(AN\)nên \(AN=\frac{1}{2}BC=NB\)suy ra \(\Delta NAB\)cân tại \(N\)

\(\Rightarrow\widehat{NAB}=\widehat{NBA}\).

Tương tự ta cũng suy ra \(\widehat{MAD}=\widehat{MDA}\)

mà \(DE//BC\Rightarrow\widehat{MDA}=\widehat{NBA}\)

suy ra \(\widehat{NAB}=\widehat{MAD}\)\(\Rightarrow A,M,N\)thẳng hàng. 

b) \(AN=\frac{BC}{2},AM=\frac{DE}{2}\Rightarrow AN-AM=\frac{BC-DE}{2}\Leftrightarrow MN=\frac{BC-DE}{2}\).

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
12 tháng 6 2019

c) ΔFNA~ΔFDC => \(\frac{S_{FNA}}{S_{FDC}}=\frac{AN^2}{DC^2}\) (1)

ΔAMC~ΔFDC => \(\frac{S_{AMC}}{S_{FDC}}=\frac{MC^2}{DC^2}\) (2)

Ta cũng có AN = DM (3)

Từ (1), (2) và (3) ta có : \(S^2_{FDC}=\frac{S_{FNA}.S_{AMC}.CD^4}{MD^2.MC^2}=S_{FNA}.S_{AMC}.\frac{\left(MD+MC\right)^4}{MD^2.MC^2}\)

\(\ge16.S_{FNA}.S_{AMC}\) (Áp dụng BĐT Cauchy)

~ Học tốt nha bạn ~

11 tháng 6 2019

đề bài có sai ko bn?

6 tháng 5 2018

d, Ta có : ME là tia phân giác ngoài của góc MFC => \(\dfrac{MF}{MC}=\dfrac{ÈF}{FC}\left(2\right)\)

MK là tia phân giác trong của góc MFC =>\(\dfrac{FK}{KC}=\dfrac{MF}{MC}\left(2\right)\)

Từ (1) và 2) suy ra : \(\dfrac{EF}{FC}=\dfrac{FK}{KC}\Rightarrow EF.KC=FK.EC\)

5 tháng 5 2018

Có cần gấp lắm ko bạn @@ , nếu ko sáng mai mik làm cho :))

20 tháng 4 2021

A B C P M N

20 tháng 4 2021

a) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).

\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).

Xét \(\Delta PAB\)có:

\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).

\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).

\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).

\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).

\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).

Ta lại có:

\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).

\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).

Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).

Xét \(\Delta MAP\)và \(\Delta PAB\)có:

\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).

\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).

\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).

\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).

\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).