\(\Delta ABC\) vuông tại A. Tia phân giác của \(\widehat{ABC}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

a)   Xét  \(\Delta ABD\)và   \(\Delta EBD\)có:

         \(AB=EB\)  (gt)

         \(\widehat{ABD}=\widehat{EBD}\)   (gt)

        \(BD\)   cạnh chung

suy ra:   \(\Delta ABD=\Delta EBD\) (c.g.c)

b)  \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng);    \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)

Xét 2 tam giác vuông:  \(\Delta DAM\)và  \(\Delta DEC\)có:

                      \(DA=DE\) (cmt)

                      \(\widehat{ADM}=\widehat{EDC}\)  (dd)

suy ra:   \(\Delta DAM=\Delta DEC\)    (cạnh góc vuông - góc nhọn kề cạnh ấy)

\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)

c)   \(\Delta DAE\)  cân tại D   (do  DA = DE) 

\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)

mà  \(\widehat{DAM}=\widehat{DEC}\)   ( \(=90^0\))

suy ra:   \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)

hay  \(\widehat{MAE}=\widehat{AEC}\)   (đpcm)

2 tháng 1 2018

a) Xét tam giác ABD và EBD có :

BA = BE;

Cạnh BD chung

\(\widehat{ABD}=\widehat{EBD}\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)

nên \(\widehat{DAM}=\widehat{DEC}\)

Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)

\(\Rightarrow AM=EC\)

c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)

Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)

2 tháng 1 2018

Hình vẽ của mình chưa đúng nên bạn vẽ cho đúng nhé. còn cách làm thì đúng rồi đó.

Hỏi đáp Toán

2 tháng 1 2018

a) Xét \(\Delta ABD\)\(\Delta EBD\), ta có:

AB=EB (gt)

\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là tia phân giác của \(\widehat{ABC}\))

BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\) (c-g-c)

b) Vì \(\Delta ABD=\Delta EBD\)

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}=90^0\) ( 2 góc tương ứng)

\(\Rightarrow AD=DE\) ( 2 cạnh tương ứng)

Ta có: \(\widehat{BAD}+\widehat{MAD}=180^0\)

\(90^0+\widehat{MAD}=180^0\)

\(\widehat{MAD}=90^0\)

Ta lại có: \(\widehat{BED}+\widehat{CED}=180^0\)

\(90^0+\widehat{CED}=180^0\)

\(\widehat{CED}=90^0\)

Xét \(\Delta MAD\)\(\Delta CED\), ta có:

\(\widehat{CED}=\widehat{MAD}\) (cmt)

AD=DE ( cmt)

\(\widehat{ADM}=\widehat{EDC}\) ( đối đỉnh)

\(\Rightarrow\Delta MAD=\Delta CED\) (g-c-g)

\(\Rightarrow EC=AM\) ( 2 cạnh tương ứng)

c) Vì \(\Delta MAD=\Delta CED\)

\(\Rightarrow DC=DM\) ( 2 cạnh tướng ứng)

\(\Rightarrow\widehat{AMD}=\widehat{ECD}\) ( 2 góc tương ứng)

Ta có: MD+ DE=ME

DC+DA=AC

mà DC=DM, DE=DA nên ME=AC

Xét \(\Delta MAE\)\(\Delta CEA\), ta có:

AM=EC (câu b)

\(\widehat{AMD}=\widehat{ECD}\) (cmt)

ME=AC (cmt)

\(\Rightarrow\Delta MAE=\Delta CEA\) ( c-g-c)

\(\Rightarrow\widehat{AEC}=\widehat{EAM}\) (2 góc tương ứng)

1 tháng 9 2017

Bài 1:

a, Xét \(\Delta\)ABM và \(\Delta\) CDM có:

MA = MC (gt)

MB = MD (gt)

\(\widehat{M_1}\) = \(\widehat{M_2}\) (đối đỉnh)

Vậy \(\Delta\)ABM = \(\Delta\)CDM (c-g-c)

b, Ta có: \(\widehat{B1}\) = \(\widehat{D}\) (Vì \(\Delta\)ABM = \(\Delta\)CDM )

Mà hai góc này ở vị trí sole trong

=> AB // CD

c, Ta có:

\(\Delta\)ABM = \(\Delta\)CDM (c.m.t)

=> AB = CD (2.c.t.ư)

Mà: CD = CN (gt)

=> AB = CN

Xét \(\Delta\)ABC và \(\Delta\) NCB có:

AB = CN ( c.m.t)

BC chung

\(\widehat{ABC}\) = \(\widehat{BCN}\)

=> \(\Delta\)ABC = \(\Delta\) NCB (c-g-c)

=> \(\widehat{B_2}\) = \(\widehat{C_1}\)

Mà hai góc này ở vị trí sole trong

=> BN = AC

1 tháng 9 2017

Bài 1:

Mik vẽ hình trước nhé

A B C M D N 1 2 1 2 1 2

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
25 tháng 4 2017

A B C D E G H

a) \(\Delta ABC\) vuông tại A

\(\widehat{ABC+\widehat{ACB=90^o}}\)

\(55^o+\widehat{ACB=90^o}\)

\(\Rightarrow\widehat{ACB=35^o}\)

Nên \(\widehat{ACB< \widehat{ABC}}\)

\(\Rightarrow AB< AC\) (quan hệ giữa góc và cạnh đối diện trong tam giác).

b) Xét hai tam giác vuông ABD và AED có:

AB = AE (gt)

AD: cạnh chung

Vậy: \(\Delta ABD=\Delta AED\left(hcgv\right)\)

c) Hai trung tuyến BD và AF cắt nhau tại G nên G là trọng tâm của

\(\Delta ABC\)

Ta có: DG = \(\dfrac{1}{3}BD\)

Hai trung tuyến ED và AK cắt nhau tại H nên H là trọng tâm của

\(\Delta AEC\)

Ta có: DH = \(\dfrac{1}{3}ED\)

Mà BD = ED (\(\Delta ABD=\Delta AED\))

Nên DG = DH

Do đó: \(\Delta GDH\) cân tại D (đpcm).

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

11 tháng 3 2019

Tham khảo (chữ hơi xấu,chịu khó đọc): Bài làm by tth

11 tháng 3 2019

tth làm lại câu c đi :)) sai rồi