\(\Delta ABC\) vuông tại A , hình vuông ADEF, D \(\in AB,E\in...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

13 tháng 6 2016

A B C H E F

a) Áp dụng định lí Pytago đảo, ta được đpcm.

b) Ta có : \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}.AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)

c) HF // AB => Góc CHF = Góc B (đồng vị) ; Góc HFC = Góc BEH = 90 độ

=> \(\Delta HFC~\Delta BEH\left(g.g\right)\)

d)Dễ thấy :  \(\Delta HBA~\Delta ABC\left(g.g\right)\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)(1)

\(\Delta HCA~\Delta ACB\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=CH.BC\)(2)

Từ (1) và (2) suy ra : \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)

Mặt khác, theo công thức lượng giác:

\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)

Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)

a; Xét ΔABC vuông tại A có \(\tan B=\dfrac{AC}{AB}=\dfrac{4}{3}\)

nên \(\widehat{B}\simeq53^0\)

=>\(\widehat{C}=37^0\)

b: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)

c: \(\widehat{BDA}+\widehat{HAD}=90^0\)

\(\widehat{BAD}+\widehat{CAD}=90^0\)

mà \(\widehat{HAD}=\widehat{CAD}\)

nên \(\widehat{BDA}=\widehat{BAD}\)

hay ΔABD cân tại B

a: \(BD\cdot CE\cdot BC\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)

\(=\dfrac{AH^4}{AH}=AH^3\)

b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)