\(\Delta ABC\) vuông tại A, đường cao AH

Chứng minh a) \(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
20 tháng 5 2019

Câu 1

Tứ giác

a, Vì tứ giác ABCD là hình thang

⇒ AB // CD

ΔCOD có AB // CD

⇒ ΔAOB ~ ΔCOD

\(\frac{OA}{OC}=\frac{OB}{OD}=\frac{AB}{CD}\)(đpcm)

b, Vì AB // CD ⇒ AM // CN

ΔCON có AM // CN

⇒ ΔAOM ~ ΔCON

\(\frac{OA}{OC}=\frac{OM}{ON}\)

\(\frac{OA}{OC}=\frac{AB}{CD}\)(câu a)

\(\frac{OM}{ON}=\frac{AB}{CD}\)

\(\frac{OM}{AB}=\frac{ON}{CD}\) (đpcm)

Câu 2

a, Vì ΔABC vuông tại A

\(\widehat{BAC}=90^0\)

Vì AH là đường cao của ΔABC

⇒ AH ⊥ BC

\(\widehat{H_1}=\widehat{H_2}=90^0\)

ΔABC và ΔHBA có

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{H_1}=90^0\\\widehat{ABC}chung\end{matrix}\right.\)

⇒ ΔABC ~ ΔHBA (g.g)

\(\frac{AB}{HB}=\frac{BC}{AB}\) (1)

⇒ AB2 = BH . BC (đpcm)

b, ΔABC có BF là đường phân giác

\(\frac{BC}{AB}=\frac{FC}{FA}\) (2)

ΔABH có HE là đường phân giác

\(\frac{AB}{HB}=\frac{AE}{EH}\)(3)

Từ (1), (2), (3) ⇒ \(\frac{AE}{EH}=\frac{FC}{FA}\)

\(\frac{EH}{EA}=\frac{FA}{FC}\) (đpcm)

Chúc bTứ giácạn học tốt !!

20 tháng 5 2019
https://i.imgur.com/Ho1UJzh.jpg