\(\Delta ABC\) vuông tại A , đường cao AH. Vẽ \(HD\perp AB\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

a: góc B=90-40=50 độ

Xét ΔABC vuông tại A có \(AB=BC\cdot sin40^0=6.43\left(cm\right)\)

=>AC=7,66(cm)

b: \(BD\cdot EC\cdot BC\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)

\(=\dfrac{AH^4}{AH}=AH^3\)

18 tháng 6 2019

a/ Có tứ giác MHNA là hcn\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) (góc nt cùng chắn \(\stackrel\frown{AN}\))

\(\widehat{AHN}=\widehat{ACH}\) (cùng phụ vs \(\widehat{HAN}\))

\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)

Xét \(\Delta AMN\)\(\Delta ACB\) có:

\(\widehat{AMN}=\widehat{ACH}\left(CMT\right)\)

\(\widehat{MAN}\) : góc chung

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(gg\right)\)

\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Leftrightarrow AM.AB=AN.AC\)

b/ Có \(HB=\frac{AB^2}{BC}\)

\(HC=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)

c/ Xét \(\Delta AHB\) vuông tại H,\(MH\perp AB\)

\(\Rightarrow MA.MB=MH^2\)(1)

tương tự\(\Rightarrow NA.NC=HN^2\) (2)

\(HB.HC=AH^2=MN^2\) (2 đường chéo bằng nhau)(3)

Xét \(\Delta MHN\) vuông tại H

\(\Rightarrow MH^2+HN^2=MN^2=AH^2\)(4)

Từ (1),(2),(3),(4)\(\Rightarrow HB.HC=MA.MB+NA.NC\)

1 tháng 10 2017

Bài 1:

A=(tan\(\alpha\)+cot\(\alpha\))2-1=22-1=3