\(\Delta ABC\) vuông tại A, đường cao AH. Gọi I,K lần lượt là hình chiếu của H trên c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

hay \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

Xét ΔAIK vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)(cmt)

Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)

1: BA=căn 10^2-6^2=8cm

sin ABC=AC/BC=3/5

=>góc ABC=37 độ

AH=6*8/10=4,8cm

BH=BA^2/BC=8^2/10=6,4cm

2: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

3: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB 

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

30 tháng 11 2021

c: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

17 tháng 1 2016

EM CHUA HOC MOI HOC LOP 7 XIN LOI CHI TIC CHO EM CAI VOI

18 tháng 1 2016

AI = \(\frac{8\sqrt{5}}{5}\)

AK = \(\frac{4\sqrt{5}}{5}\)

SAIK = \(\frac{8\sqrt{5}}{5}\) *\(\frac{4\sqrt{5}}{5}\)   / 2 = 3,2 cm2

6 tháng 10 2018

A K C H M I B

Xét \(\Delta\)ABC vuông ở A có đường cao AH:

=>(1) AB2=BH.BC

(2) AC2=HC.BC(hệ thức lượng)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

a: \(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

b: \(AI\cdot AB=AH^2\)

\(AK\cdot AC=AH^2\)

Do đó: \(AI\cdot AB=AK\cdot AC\)

c: góc MAC=góc C

góc AKI=góc AHI=góc B

=>góc MAC+góc AKI=90 độ

=>AM vuông góc với KI

22 tháng 2 2016

Áp dụng hệ thức lượng trong tam giác vuông, ta lần lượt có:

AI = \(\frac{AH^2}{AB}=\frac{4^2}{AB}=\frac{16}{AB}\) , \(AK=\frac{AH^2}{AC}=\frac{16}{AC}\)

Ta có SAIK = \(\frac{1}{2}AI.AK=\frac{1}{2}.\frac{16}{AB}.\frac{16}{AC}=128.\frac{1}{BC.AH}=128.\frac{1}{10.4}=3.2cm^2\)

1 tháng 8 2021

cc

 

12 tháng 8 2020

Mình cần gấp ạ!!