Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}.\)
Theo Py-ta-go ta có: \(AB^2+AC^2=BC^2.\)
\(\Leftrightarrow AB^2+AC^2=15^2=225\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{225}{25}=9.\)
\(\Rightarrow AB^2=9\cdot9=81\Rightarrow AB=9\)
\(\Rightarrow AC^2=9\cdot16=144\Rightarrow AC=12\)
VẬY AB=9 CM và AC=12CM
Bài 1:
Giải:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=15^2=225\)
Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Mà \(AB^2+AC^2=225\)
\(\Rightarrow9k^2+16k^2=225\)
\(\Rightarrow25k^2=225\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=3\)
\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)
Vậy AB = 9 cm; AC = 12 cm
2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:
AH2 + BH2 = AB2
=> BH.HC + BH2 = AB2
=> BH( HC + BH ) = AB2
=> BH.BC = AB2 (1)
áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:
AH2 + HC2 = AC2
=> BH.HC + HC2 = AC2
=> HC( BH + HC ) = AC2
=> HC.BC = AC2 (2)
Từ 1 và 2 ta có:
=> BH.BC + HC.BC = AB2 + AC2
=> BC( BH + HC ) = AB2 + AC2
=> BC.BC = AB2 + AC2
=> BC2 = AB2 + AC2
Theo định lí Py - ta - go đảo
=> \(\Delta ABC\) vuông tại A (đpcm)
A H C C
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
=>AB2+AC2=262 (1)
Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:
\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)
Sửa
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)
\(\Rightarrow AC\approx9,7\left(cm\right)\)
=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)
Bài giải: Ta có: AB/AC = 8/15 => AB/8 = AC/15
Áp dụng định lí Pi-ta-go vào t/giác ABC , ta có:
BC2 = AB2 + AC2
=> 512 = AB2 + AC2
=> 2601 = AB2 + AC2
Áp dụng t/c của dãy tỉ số bằng nhau
Từ \(\frac{AB}{8}=\frac{AC}{15}\)=> \(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)
=> \(\hept{\begin{cases}\frac{AB^2}{64}=9\\\frac{AC^2}{225}=9\end{cases}}\)=> \(\hept{\begin{cases}AB^2=9.64=576\\AC^2=9.225=2025\end{cases}}\)=> \(\hept{\begin{cases}AB=24\\AC=45\end{cases}}\)
Vậy ...
b) tự lm
\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)
\(\Leftrightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC}{15}\right)^2=\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)
\(\Rightarrow+)\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)
\(+)\frac{AC^2}{225}=9\Rightarrow25\left(cm\right)\)
AB/AC = 3/4
AB =3/4 AC
Tam giác ABC là tam giác vuông tại A
Áp dụng định lý Pytago:
AB^2 +AC^2 = BC^2
(3/4AC)^2 +AC^2 = 225
9/16 AC^2 +AC^2 =225
AC^2 x 25/16 = 225
AC^2 = 225 x16/25
AC^2 = 144 ( MÀ AC > 0)
Suy ra AC= 12
Suy ra AB/12 = 3/4
AB= 12x3/4 = 9 cm
có \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\) (1)
và BC = 15 cm
Tam giác ABC có góc A = 90 độ nên tam giác ABC vuông tại A
Áp dụng định lý pytago vào tam giác ABC vuông tại A:
\(AB^2+AC^2=BC^2\)(2)
thế (1) vào (2), ta được:
\(\frac{9}{16}AC^2+AC^2=225\)
\(\frac{25}{16}AC^2=225\)
\(AC^2=144\)
\(\orbr{\begin{cases}AC=12\\AC=-12\end{cases}}\)
AC = -12 (loại) vì AC \(\in\)N*
vậy AC = 12 cm
AB = 3/4.AC = 3/4 . 12 = 9 cm
vì tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=225\)
mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{255}{25}=\frac{51}{5}\)
đến đây thì dễ rồi nhé
^_^