\(\Delta ABC\) vuông tại A. Có góc B = 600 và AB = 5 cm. Tia phân giác củ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Bài này có vẻ hơi thừa.

Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có:

BD cạnh chung

\(\widehat{ABD}=\widehat{EBD}\) (suy từ gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

\(\Rightarrow AB=EB\) (2 cah t/ư)

\(\Rightarrow\Delta ABE\) cân tại A (1)

\(\widehat{B}=60^o\) (gt) (2)

nên từ (1) và (2) suy ra \(\Delta ABE\) là t/g đều.

24 tháng 2 2017

bạn vẽ hình chưa vậy, mk nghĩ bạn vẽ sai đó, bạn có cần mk vẽ cái hình của mk cho bạn xem không, mà cũng chẳng cần hình, từ \(\Delta ABD=\Delta EBD\) sẽ suy ra đc góc A bằng góc E (t/ư), mà góc A = 90 độ thì góc E cũng bằng 90 độ \(\Rightarrow\Delta EBD\) vuông tại E Anh \(\Rightarrow\) bạn vẽ hình sai.

5 tháng 2 2018

a)   Xét 2 tam giác vuông:   \(\Delta ABD\)và   \(\Delta EBD\)có:

         \(BD:\)cạnh chung

         \(\widehat{ABD}=\widehat{EBD}\)(gt)

suy ra:   \(\Delta ABD=\Delta EBD\)(ch_gn)

b)   \(\Delta ABD=\Delta EBD\)

\(\Rightarrow\)\(AB=EB\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta ABE\)cân tại   \(A\)

mà   \(\widehat{ABE}=60^0\)

\(\Rightarrow\)\(\Delta ABE\)là  tam  giác  đều

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

28 tháng 2 2017

a/ Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD là cạnh huyền chung

\(\widehat{ABD}=\widehat{EBD}\) ( BD là phân giác góc B)

\(\Rightarrow\Delta ABD=\Delta EBD\) ( cạnh huyền góc nhọn)

b/ Vì \(\Delta ABD=\Delta EBD\) (cmt)

=> AB=BE (hai canh tương ứng)

\(\widehat{B}\) = 600 (gt)

Vậy \(\Delta ABE\) có AB=BE và \(\widehat{B}=60^0\) nên \(\Delta ABE\) đều

c/ ta có: \(\widehat{EAC}+\widehat{BEA}=90^0\)(GT)

\(\widehat{B}+\widehat{C}=90^0\) (\(\Delta ABC\perp A\))

\(\widehat{BEA}=\widehat{B}=60^0\) (\(\Delta ABE\) đều)

Nên \(\widehat{EAC}=\widehat{C}\)

\(\Rightarrow\Delta AEC\) cân tại E

\(\Rightarrow EA=EC\) mà EA=AB=EB=5cm

Do đó: EC=5cm

vậy BC= EB+EC= 5+5 =10

BC=10 cm

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau